

April 28, 2021

Mr. Aaron Jozsef Special Projects and Processes Manager Resolve Marine Group 1510 SE 17th Street, Suite 400 Ft. Lauderdale, FL 33316

Subject: Mayor's Point

Discharge Investigation Report

1029 Bay Street Brunswick, Georgia

Dear Mr. Jozsef:

Tetra Tech, Inc. (Tetra Tech) is pleased to submit this Discharge Investigation Report summarizing the results of our work at the Georgia Port Authority, Pac Comm, Ocean Petroleum, and Scott and Sons properties in Brunswick, Georgia. This report includes three enclosures and two attachments. Enclosure 1 contains figures. Enclosure 2 contains the Tetra Tech field logbook notes. Enclosure 3 contains the Tetra Tech data validation report. Attachment 1 is the surveyor's deliverable. Attachment 2 contains the laboratory analytical data packages.

If you have any questions or need additional copies of this letter report, please call me, John Snyder, at (678) 775-3085.

Sincerely,

John Snyder PG, PE

Tetra Tech Field Team Lead

Christopher Jones

Tetra Tech Project Manager

EXECUTIVE SUMMARY

The United States Coast Guard (USCG) has been investigating a continuous discharge of oil from the Georgia Port Authority (GPA) Mayor's Point Facility and the neighboring Pac Comm, Inc property into the navigable waterway of the East River since 2018. Various investigations by different parties have failed to conclusively identify the source of the discharge.

Tetra Tech was retained by Resolve Marine Group (a USCG response contractor) to conduct additional assessment work on the GPA property, Pac Comm property, and the Ocean Petroleum and Scott and Sons properties to the south.

In March 2021, Tetra Tech mobilized to the site to conduct the following tasks:

- install additional permanent monitoring wells on the Ocean Petroleum and Pac Comm properties,
- collect soil samples during the installation of the new wells,
- install and sample two temporary monitoring wells on the Scott and Sons property,
- sample selected existing monitoring wells on the Ocean Petroleum and GPA properties and all Tetra Tech-installed permanent monitoring wells,
- conducting a 48-hour, continuous, potentiometric survey of potentiometric conditions across the GPA, Pac Comm, and Ocean Petroleum properties.

A total of nine permanent monitoring wells and two temporary monitoring wells were installed during the mobilization. Subsurface soil samples were collected from the borings of each of the new permanent wells. Tetra Tech collected groundwater samples from a total of 20 wells across the four properties. Tetra Tech submitted groundwater samples from 18 wells for analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX), Total Petroleum Hydrocarbons (TPH) – Gasoline-range Organics (GRO), TPH – Diesel-range Organics (DRO), and TPH – Oil-range Organics (ORO). Tetra Tech submitted free product samples from three wells for petroleum fingerprint analysis.

Tetra Tech installed continuous water level data loggers in 14 wells across the site, and one data logger in the East River to collect approximately 48 hours of data to determine groundwater flow direction and examine the extent of tidal influence on groundwater flow.

Tetra Tech identified soil contamination on both the Pac Comm property and Ocean Petroleum property that exceeds Georgia Environmental Protection Division (GAEPD) Underground Storage Tank (UST) Program Comparison Levels for BTEX constituents, TPH-GRO and TPH-DRO.

Tetra Tech identified free product and BTEX concentrations in groundwater that exceed GAEPD UST Program Comparison Levels on the GPA, Pac Comm, and Ocean Petroleum properties. Petroleum fingerprinting indicates that free product present on the GPA property is consistent with gasoline; free product present on Ocean Petroleum is consistent with #2 fuel oil; and free product present between these two properties on the Pac Comm property is consistent with a mixture of gasoline and #2 fuel oil.

The water level data indicates that groundwater generally flows west, towards the East River. The data shows that the degree of tidal influence in the wells varies greatly across the site, ranging from up to five feet of amplitude in wells adjacent to the East River, to negligible amplitude at wells on the eastern portion of the properties. The data indicates that at some points in the tidal cycle groundwater along the

shore of the Pac Comm property is lower than the East River. In that area, at those times, groundwater may be moving eastward, from the river. Tetra Tech noted 4.5 feet of free product in well PC-03, located in this area. This column of free product was not present at all times and its presence can not be explained by available data.

BACKGROUND

The United States Coast Guard (USCG) has been investigating a continuous discharge of oil from the Georgia Port Authority (GPA) Mayor's Point Facility and the neighboring Pac Comm, Inc property into the navigable waterway of the East River since 2018 (see Figures 1 and 2 of Enclosure 1). The USCG Marine Safety Lab (MSL) identified the discharging oil as "weathered gasoline mixed with light fuel oil and lubricating oil." The GPA retained Terracon to conduct an investigation on the GPA property to identify possible sources of the oil. After conducting a ground-penetrating radar survey, Terracon installed numerous groundwater monitoring wells and collected numerous soil samples across the southwest portion of the GPA property. Terracon concluded that the source of the oil was not on the GPA property.

Terracon's investigation suggested that the most-likely source of the discharging oil was to the south of the GPA property. The parcel immediately to the south of the GPA property is owned by Pac Comm, Inc. and is currently leased to Weeks Marine as an equipment staging yard for the *Golden Ray* salvage operation. Previously, the Pac Comm property was used by various businesses that supported the local fishing fleet with fuel, stores, and ice for over half a century. Most recently it was used for storage and crushing of demolition debris for road and parking lot material. Records indicate that two underground storage tanks (USTs) were installed on site: an 8,000-gallon diesel tank and a 5,000-gallon gasoline tank. Information provided by USCG to Tetra Tech indicates that both tanks were removed by 2003.

South of the Pac Comm property is Ocean Petroleum, a fueling terminal with a tank battery containing at least three large vertical bulk storage tanks and eight horizontal storage tanks. To the south of Ocean Petroleum is the Scott and Sons property, a vacant parcel largely covered with debris.

In 2020, Tetra Tech conducted an initial site survey on the Pac Comm property to determine if USTs could be identified through geophysical methods, and if the source of the discharge could be identified through optical image profiling (OIP) tooling. The results of the geophysical survey did not suggest the presence of a UST on the Pac Comm property, although portions of the parcel were inaccessible, due to staged equipment related to the *Golden Ray* response. The OIP investigation revealed a petroleum plume on the western portion of the Pac Comm property, with gradient decreasing from south to north. This gradient suggests that the source of the plume is either in an inaccessible area of the southwest portion of the Pac Comm property, or from a parcel to the south of the Pac Comm property.

Based on the information generated by the site survey, the USCG decided to expand the investigation to additional properties and was able to secure access to the GPA facility, Ocean Petroleum, and the Scott and Sons parcel. Tetra Tech was tasked to:

- install additional permanent monitoring wells on the Ocean Petroleum and Pac Comm properties,
- collect soil samples during the installation of the new wells,
- install and sample two temporary monitoring wells on the Scott and Sons property,
- sample selected existing monitoring wells on the Ocean Petroleum and GPA properties and all Tetra Tech-installed permanent monitoring wells,
- conducting a 48-hour, continuous, potentiometric survey of potentiometric conditions across the GPA, Pac Comm, and Ocean Petroleum properties.

MOBILIZATION

Prior to mobilization, Tetra Tech alerted the GA811 ("call-before-you-dig") system so that utility providers could mark buried lines around the four parcels of interest. Tetra Tech; Ground Penetrating Radar Systems Inc. (GPRS), a private utility mark-out company; and Geo Lab Probing Services Inc. (Geo Lab), a Georgia-licensed drilling company, mobilized to the site on March 8, 2021. The current Pac Comm tenant, Weeks Marine, expressed concerns about the potential spread of the COVID-19 virus. The USCG decided to limit interaction between Weeks Marine staff and personnel associated with this investigation by conducting all work between the hours of 1800 and 0600, when no personnel from Weeks Marine would be on site.

SOIL SAMPLING

Prior to completing any subsurface work during the investigation, GPRS screened all proposed boring locations with ground-penetrating radar and electromagnetic methods to ensure that no utility lines or other subsurface objects were present.

All locations where Tetra Tech was to install permanent wells were first logged using direct-push drilling methods to develop lithologic profiles. The borings were logged by the Tetra Tech field geologist and then screened with a photoionization detector (PID) in 1-foot intervals to semi-quantify volatiles present and the depths at which they occur. Small samples from each interval were placed in a Zip-lock bag and then allowed to warm for approximately ten minutes. The headspace within each bag was then screened with the PID and the volatile organic compound (VOC) concentration was recorded. Tetra Tech then collected a soil sample from the interval with the highest VOC concentration. These subsurface soil samples were submitted for laboratory analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX), Total Petroleum Hydrocarbons (TPH) – Gasoline-range Organics (GRO), TPH – Diesel-range Organics (DRO), and TPH – Oil-range Organics (ORO).

WELL INSTALLATION

Following soil logging, the drilling subcontractor installed 2-inch, permanent polyvinyl-chloride (PVC) wells at five locations on the Pac Comm property (wells PC-01 through PC-05) and four locations on Ocean Petroleum (wells OP-01 through OP-04) using hollow-stem augers (see Figure 3 of Enclosure 1). Tetra Tech attempted to capture the surface of the water table within the screened portion of the well to ensure that any free product sitting on top of the water table would be represented in the well. However, the shallow depth of the water table, coupled with the design requirements of the wells (specifically the height above the screen that the filter pack needed to extend and the thickness of bentonite grout required on top of the filter pack) limited the minimum depth of the screened portion of the wells to four feet below ground surface (ft bgs). Therefore, all wells, with the exception of PC-01, were completed to a total depth of 14 ft bgs, with a screen interval from 4 ft bgs to 14 ft bgs. Well PC-01 was competed to a total depth of 15 ft bgs and screened from 5 ft bgs to 15 ft bgs.

The 14-foot deep wells contained a sand filter pack installed from 2.5 ft bgs to 14 ft bgs with a 1.5-foot thick bentonite seal from 1 ft bgs to 2.5 ft bgs. For PC-01, the sand filter pack was installed from 3 ft bgs to 15 ft bgs with a bentonite seal placed from 1.5 ft bgs to 3 ft bgs. These construction details deviate slightly from the specifications recommended in the EPA guidance document *Design and Installation of Monitoring Wells* (SESDGUID-101-RD), January 2018, which specifies that the sand filter pack should

extend two feet above the screened interval and that the bentonite seal should be two feet thick. However, based on the shallow depth of the water table, the wells were constructed as close to design specifications as possible, while still meeting project requirements for structural and sampling integrity.

All permanent monitoring wells were completed with a flush-mount manhole cover set in a 3-foot by 3-foot concrete pad. Wells were then developed using a submersible pump to flush the well of sediment and allowed to equilibrate for at least 48 hours prior to sampling. All newly installed wells were surveyed by a Georgia-licensed surveyor to determine latitude, longitude, and top-of-casing elevation to the nearest one-hundredth of a foot. The results of the survey are included in Attachment 1.

TEMPORARY WELLS

On March 9, the drilling subcontractor advanced two borings to 9 feet bgs on the Scott and Sons property and installed 1-inch PVC temporary wells in the boreholes. The wells, designated SS-1 and SS-2, were constructed with a five foot screened interval and four feet of riser. Tetra Tech purged these temporary wells with a peristaltic pump for 10 to 15 minutes. After purging the wells, Tetra Tech immediately collected groundwater samples from each well for laboratory analysis of BTEX, TPH-GRO, TPH-DRO, and TPH-ORO. After sampling, the drillers removed the PVC and abandoned each borehole with hydrated bentonite pellets. The temporary well locations are depicted on Figure 3 of Enclosure 1.

PERMANENT MONITORING WELL SAMPLING

Tetra Tech sampled all newly installed monitoring wells and selected existing monitoring wells on the Ocean Petroleum and GPA properties. The selection of which existing wells to sample was in consultation with EPA project advisors, with the goal of providing good coverage of the suspected impacted areas across the site. Sampling was conducted in general accordance with EPA guidance document *Groundwater Sampling* (SESDPROC-301-RD), April 2017, using the "Low-Flow Method" with a peristaltic pump. Tetra Tech submitted the groundwater samples for laboratory analysis of BTEX, TPH-GRO, TPH-DRO, and TPH-ORO.

Additionally, the free product/groundwater from three selected wells (MW-11 at Ocean Petroleum, PC-03 at Pac Comm, and GPA-01 at the GPA property) was submitted for petroleum fingerprinting analysis to determine the likely type of product present in the wells.

Note: due to the large volume of free product encountered in PC-03, the sample collected from that well (PC03-GW) was submitted for fingerprint analysis only.

POTENTIOMETRIC SURVEY

To determine groundwater flow direction and evaluate the magnitude of tidal influence on the water table across the site, Tetra Tech collected approximately 48 hours of continuous groundwater data from 14 wells across the site and from the river. Tetra Tech used In-Situ Level TROLL 700 data loggers installed in each of the 14 wells selected by EPA on-site personnel, and placed one in the East Brunswick River, adjacent to the GPA dock, to record water level readings in 1-minute intervals. The data loggers recorded water depth, based on a pressure sensor located within the instrument. However, because this sensor is not referenced to any fixed elevation, the raw data collected required correction. After approximately two tidal cycles, Tetra Tech manually gauged each well that contained a data logger, recording the water levels in each well. The manually-acquired elevation readings were then used to correct the raw pressure

data recorded by the data logger by referencing the pressure readings to top-of-casing elevation data. Tetra Tech also recorded free-product thicknesses, if encountered, during the manual gauging.

RESULTS

The following subsections summarize the results of each of the activities described above. Additional materials are found in the enclosures and attachments.

Subsurface Soil Sample Results

Tetra Tech compared the laboratory analytical results to Georgia Environmental Protection Division (EPD) Underground Storage Tank Management Program comparison values used for closure at UST sites. Soil samples collected from borings PC1 and PC2, in the central and eastern portions of the Pac Comm site, did not contain petroleum-related contamination at levels exceeding the comparison values. Similarly, the soil sample from OP1, collected from the northeastern portion of the Ocean Petroleum property, did not contain contamination at levels that exceed the comparison levels. Soil samples from borings closer to the shoreline (PC3, PC4, PC5, OP2 and OP3) all showed exceedances for BTEX constituents and TPH values. The soil sample from OP4, advanced in the southeast corner of the Ocean Petroleum property, contained a TPH-DRO exceedance, but no BTEX or TPH-GRO exceedance. The full laboratory data package for these samples is included in Attachment 2.

Table 1 on the following page contains a summary of the analytical results from the subsurface soil samples collected during well installation activities:

Table 1: Subsurface Soil Sampling Results

Sample ID	Depth	Benzen (μg/Kg		Ethylbenz (μg/Kg		Tolue (μg/K		Xylenes, Τα (μg/Kg)		Gasoline F Organi (mg/K	cs	Diesel I Orga (mg/	nics	Oil Ran Organi (mg/K	ics
Compariso	on Levels1	17		18,000)	115,00	00	700,000)	10		10)	Not list	ted
PC1-SB	6 to 7 ft bgs	7.2	U	7.2	U	7.2	U	6.1	J	14	U	11	J+	26	U
PC2-SB	4 to 5 ft bgs	5.9	U	5.9	U	1.1	J	12	U	10	U	5.8	J+	21	U
PC3-SB	5 to 6 ft bgs	130,000		360,000		850,000		1,800,000		8,900		4,500		260	
PC4-SB	5 to 6 ft bgs	92,000		160,000		320,000		800,000		6,600		2,700		300	
PC5-SB	5. 601	64,000		140,000	J	150,000	J	650,000	J	2,700		1,200		120	U
PC5-SB-DUP	5 to 6 ft bgs	26,000	J	68,000		42,000	J	320,000	J	2,900		1,400		120	U
OP1-SB	4 to 5 ft bgs	5.5	U	11	U	1	J	11	U	13	U	23	J+	5.5	U
OP2-SB	1 to 2 ft bgs	54,000		33,000		4,700		31,000		610		580		76	
OP3-SB	2 to 3 ft bgs	10,000		13,000		24,000		71,000		1,200		100		120	U
OP4-SB	6 to 7 ft bgs	4	J	6.8		14	J+	37		3.9	J	210		58	

Notes:

Comparison Levels are based on Table B Soil Threshold Levels in the Georgia Environmental Protection Division UST Closure Report Guidance Document

BOLD Bolded values represent exceedances of the comparison levels

DUP Duplicate sample

ft bgs feet below ground surface

The analyte was positively identified. The reported value is estimated

J+ The analyte was positively identified. The reported value is estimated, biased high

µg/Kg micrograms per kilogram
mg/Kg milligrams per kilogram
OP Ocean Petroleum Property
PC Pac Comm Property
SB Subsurface soil sample

U The analyte was not detected. The associated value is the reporting limit

Groundwater Sample Results

Tetra Tech compared analytical results for BTEX compounds to Georgia EPD Underground Storage Tank Management Program comparison standards. Figure 4A depicts the BTEX isocontours for BTEX contaminants in groundwater across the sites. Georgia EPD UST Management Program groundwater comparison standards do not exist for the TPH categories; however, TPH results are included to provide a way to compare the magnitude and makeup of petroleum contamination across the site. Figures 4B, 4C, and 4D in Enclosure 1 depict isocontours based on the concentrations of the various TPH contaminants in groundwater across the site. Tables 2 through 5 summarize the analytical results for groundwater samples collected across the four properties.

Georgia Port Authority Property

Table 2 below provides a summary of the groundwater sample results collected from existing monitoring wells on the GPA property.

Table 2: Georgia Port Authority Groundwater Results

Analyte	Units	GAEPD Comparison Standard ¹	GPA05-GW	GPA09-GW	GPA11-GW
Benzene	μg/L	5	5,800 J-	1,200	7.8
Ethylbenzene	μg/L	700	2,500 J-	1,200	1.0 U
Toluene	μg/L	1,000	200 UJ	62	1.0 U
Xylenes	μg/L	10,000	6,800 J-	1,200	0.41 J
Gasoline Range Organics	mg/L		46	18	0.1 U
Diesel Range Organics	mg/L	Not listed	5	1.6	0.18 J
Oil Range Organics	mg/L		2.5 U	2.0 U	2.0 U

Notes:

Comparison Levels are based on Type 3 GAEPD Risk Reduction Standards

BOLD The associated value exceeds the comparison criteria

GAEPD Georgia Environmental Protection Division

GPA Georgia Port Authority GW Groundwater sample

J The analyte was positively identified. The reported value is estimated

J- The analyte was positively identified. The reported value is estimated, biased low

μg/L micrograms per liter mg/L milligrams per liter

U The analyte was not detected. The associated value is the reporting limit

UJ The analyte was not detected. The associated value is the reporting limit, with is considered approximate

All three groundwater samples collected from the GPA property contained benzene at concentrations above the Georgia EPD comparison standard. GPA-05 and GPA-09 also exceeded the standard for ethylbenzene. Additionally, a free product sample collected from well GPA-01 and submitted for fingerprint analysis was found to most-closely resemble unleaded gasoline.

Pac Comm Property

Table 3 below provides a summary of the groundwater sample results collected from newly installed monitoring wells on the Pac Comm property.

Table 3: Pac Comm Groundwater Results

Analyte	Units	GAEPD Comparison Standard ¹	PC01- GW	PC02- GW	PC04-GW	PC05-GW
Benzene	μg/L	5	1.0 U	1.0 U	270	1,300
Ethylbenzene	μg/L	700	0.59 J	1.0 U	120	760
Toluene	μg/L	1,000	1.0 U	1.0 U	180	460
Xylenes	μg/L	10,000	2.3	1.0 U	530	1,400
Gasoline Range						
Organics	mg/L		0.1 U	0.1 U	5.1	9.9
Diesel Range Organics	mg/L	Not listed	0.26 J	0.34 J	1.3 J+	0.96 J+
Oil Range Organics	mg/L		2.3 U	2.5 U	2.4 U	2.0 U

Notes:

Comparison Levels are based on Type 3 GAEPD Risk Reduction Standards

BOLD The associated value exceeds the comparison criteria

GAEPD Georgia Environmental Protection Division

GW Groundwater sample

J The analyte was positively identified. The reported value is estimated

J+ The analyte was positively identified. The reported value is estimated, biased high

 $\begin{array}{ll} PC & Pac \ Comm \\ \mu g/L & micrograms \ per \ liter \\ mg/L & milligrams \ per \ liter \end{array}$

U The analyte was not detected. The associated value is the reporting limit

Tetra Tech installed five monitoring wells on the Pac Comm property. Laboratory analytical results revealed monitoring wells PC-04 and PC-05 contained BTEX constituents at concentrations that exceeded the GAEPD comparison standards, as well as detectable levels of TPH. Tetra Tech did not collect a groundwater sample from well PC-03 due to the volume of free product encountered during sampling. Tetra Tech did collect a free product sample from PC-03 for fingerprint analysis and the sample (PC03-GW) was found to most-closely resemble a gasoline/diesel/#2 fuel oil mixture.

Ocean Petroleum Property

Tables 4 and 5 below provide a summary of the groundwater sample results collected from newly installed and existing monitoring wells on the Ocean Petroleum property.

Table 4: Ocean Petroleum Groundwater Results (Tetra Tech installed monitoring wells)

Analyte	Units	GAEPD Comparison Standard ¹	OP01-GW	OP02-GW	OP03-GW	OP04-GW	OP5-GW
Benzene	μg/L	5	0.7 J	210	59 J-	0.43 J	100
Ethylbenzene	μg/L	700	0.65 J	130	4.8 J-	0.41 J	6,200
Toluene	μg/L	1,000	1.4	310	8.7 J-	0.74 J	540
Xylenes	μg/L	10,000	3.8	520	7.0 J-	1.9	19,000
Gasoline Range Organics	mg/L		0.1 U	4.9	0.54	0.1 U	67
Diesel Range Organics	mg/L	Not listed	0.31 U	9.5	0.97 J+	0.68 J+	10
Oil Range Organics	mg/L		2.1 U	1.4 J	0.35 J	3.0 U	2 U

Table 5: Ocean Petroleum Groundwater Results (existing monitoring wells)

Analyte	Units	GAEPD Comparison Standard ¹	MW01-GW	MW01-GW- DUP	MW11-GW	MW13-GW	MW18-GW
Benzene	μg/L	5	5,400	5,200	770	480	600
Ethylbenzene	μg/L	700	1,000	1,000	380	780	230
Toluene	μg/L	1,000	700	710	1,400	26	190
Xylenes	μg/L	10,000	3,900	3,800	1,800	2,400	630
Gasoline Range Organics	mg/L		37	38	11	14	5.9
Diesel Range Organics	mg/L	Not listed	7.6 J+	6.8 J+	12	12	3.0
Oil Range Organics	mg/L		1.6 J	1.6 J	1.4 J	0.88 J	2.0 U

Notes:

Comparison Levels are based on Type 3 GAEPD Risk Reduction Standards

BOLD The associated value exceeds the comparison criteria GAEPD Georgia Environmental Protection Division

GAEPD Georgia Environmental Protect
GW Groundwater sample

J The analyte was positively identified. The reported value is estimated

J+ The analyte was positively identified. The reported value is estimated, biased high
 J- The analyte was positively identified. The reported value is estimated, biased low

μg/L micrograms per liter
 mg/L milligrams per liter
 MW monitoring well (existing)
 OP Ocean Petroleum

U The analyte was not detected. The associated value is the reporting limit

The two monitoring wells located upgradient of the ASTs (OP-01 and OP-04) did not contain BTEX compounds at levels exceeding GAEPD comparison standards; the laboratory analytical results for all of the other monitoring wells on the property where Tetra Tech collected samples exceeded the standards for one or more BTEX compounds.

Tetra Tech also collected a free product sample from existing monitoring well MW-11, which was submitted for fingerprint analysis. Results of the fingerprint analysis identified the free product to most-closely resemble #2 fuel oil.

Scott and Sons Property

Table 6 below provides a summary of the groundwater sample results collected from the two temporary wells installed on the Scott and Sons property.

Table 5: Scott and Sons Groundwater Results

Analyte	Units	GAEPD Comparison Standard ¹	SS1-GW	SS2-GW	
Benzene	μg/L	5	1.0 U	1.0 U	
Ethylbenzene	μg/L	700	1.0 U	1.0 U	
Toluene	μg/L	1,000	1.0 U	1.0 U	
Xylenes	μg/L	10,000	1.0 U	1.0 U	
Gasoline Range Organics	mg/L		0.1 U	0.1 U	
Diesel Range Organics	mg/L	Not listed	1.2	0.46 J+	
Oil Range Organics	mg/L		1.0 J	2.3 U	

Notes:

Comparison Levels are based on Type 3 GAEPD Risk Reduction Standards

GAEPD Georgia Environmental Protection Division

GW Groundwater sample

J The analyte was positively identified. The reported value is estimated

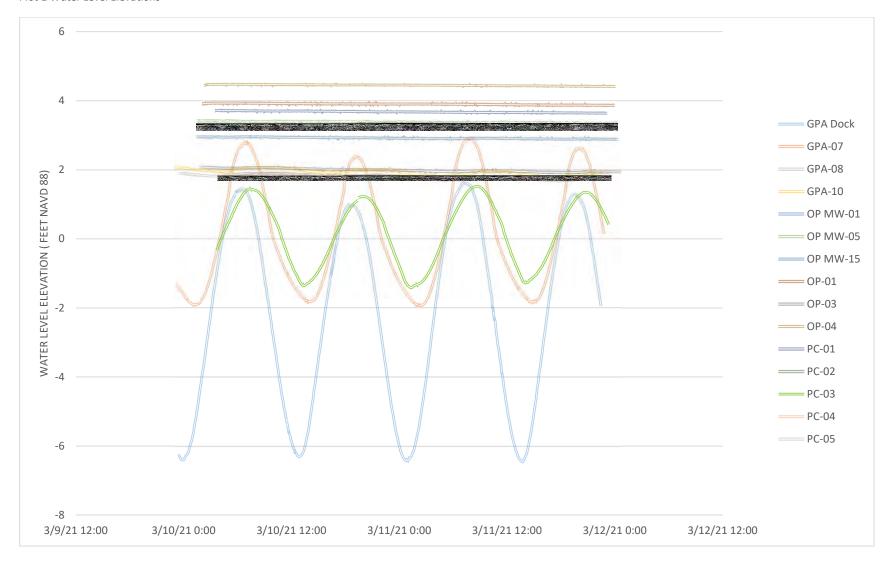
J+ The analyte was positively identified. The reported value is estimated, biased high

 $\begin{array}{ll} \mu g/L & \text{micrograms per liter} \\ mg/L & \text{milligrams per liter} \\ SS & Scott \ and \ Sons \end{array}$

U The analyte was not detected. The associated value is the reporting limit

Laboratory analysis of the two Scott and Sons groundwater samples did not detect any BTEX compounds or TPH-GRO in either of the samples. Sample SS1-GW had a detection of TPH-DRO and TPH-ORO; SSW-GW had a detection of TPH-DRO

Water Level Monitoring


Tetra Tech downloaded data sets from the 14 dataloggers placed in selected wells and the datalogger placed in the East Brunswick River. The data was then corrected against survey data to provide corresponding water level elevations, and plots of each data set were overlain onto a single plot (see Plot 1, below). The river level (GPA-Dock) shows a tidal amplitude of approximately eight feet. Well GPA-07, shown in orange, has the greatest tidal fluctuation of any of the wells, with a difference in water elevation of approximately 5 feet between high and low tide. Well PC-03, displayed on the plot in green, also demonstrates a large degree of tidal influence, with a difference of nearly three feet between high and low tide. Other wells show minor degrees of tidal influence and there is a strong correlation between tidal influence and proximity to the river.

Tetra Tech evaluated the potentiometric conditions at the site at four times in the tidal cycle: high tide, the middle of ebb tide, low tide, and the middle of flood tide. The potentiometric surfaces at these four times are presented in Figures 5A through 5D in Enclosure 1.

The results of the monitoring show a fairly consistent gradient, from the east directly towards the East Brunswick River, with a slight northward component. However, at high tide, the river level is higher than the water level in well OP-03, indicating that there is likely migration from the river to the near-shoreline.

Plot 1 Water Level Elevations

CONCLUSIONS AND DISCUSSION

Tetra Tech has identified soil contamination on both the Pac Comm property and Ocean Petroleum property that exceeds GAEPD UST Program Comparison Levels for BTEX constituents, TPH-GRO and TPH-DRO.

Tetra Tech identified free product and BTEX concentrations in groundwater that exceed GAEPD UST Program Comparison Levels on the GPA, Pac Comm, and Ocean Petroleum properties. Petroleum fingerprinting indicates that free product present on the GPA property is consistent with gasoline; free product present on Ocean Petroleum is consistent with #2 fuel oil; and free product present between these two properties on the Pac Comm property is consistent with a mixture of gasoline and #2 fuel oil.

The plumes depicted in Figures 4A through 4D, combined with the fingerprinting data, suggest that there are, at a minimum, two separate sources: one to the north of Pac Comm and one to the south of Pac Comm. However, the absence of BTEX and TPH data from well PC-03 presents a data gap when combined with observations made during the field event:

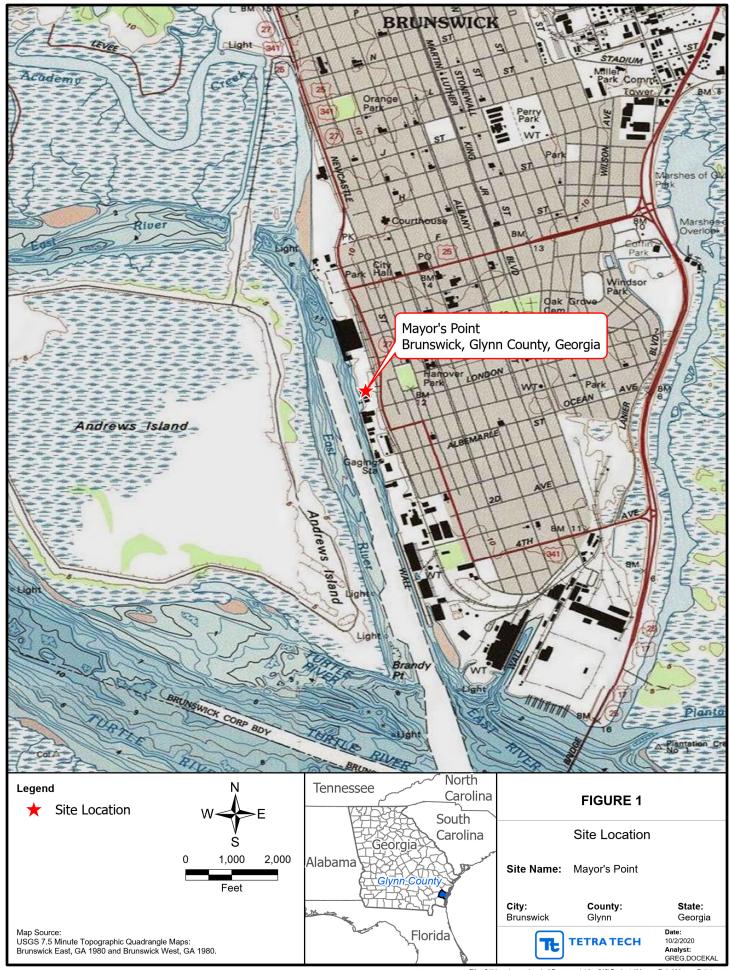
- Well PC-03 was installed and developed on 3/8/21. No free product was noted during development;
- During manual gauging of PC-03 on 3/10/21, no free product was noted;
- During the early morning of 3/12/21, 4.5 feet of free product were encountered in PC-03.

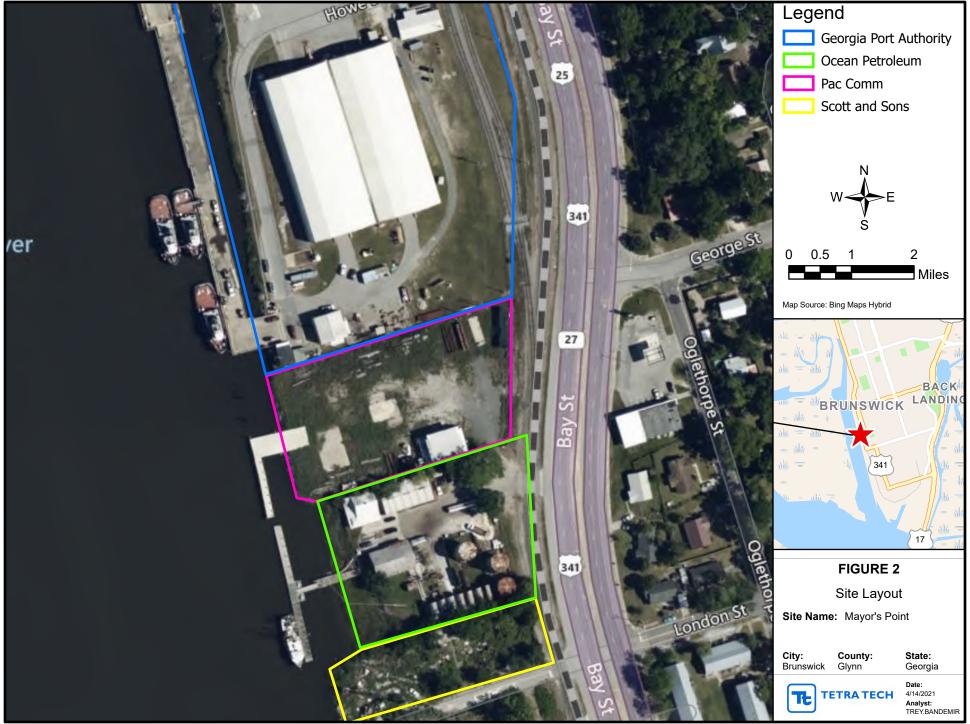
The soil sample collected during the installation of PC-03 contained the highest levels of BTEX, TPH-GRO, and TPH-DRO of any soil sample collected. Well PC-03 shows a high degree of tidal influence and appears to receive water from both the east and the west at high tide. Well PC-05 is less than 40 feet upgradient of PC-03, but no free product was observed in PC-05 when the 4.5 feet of free product was observed in PC-03.

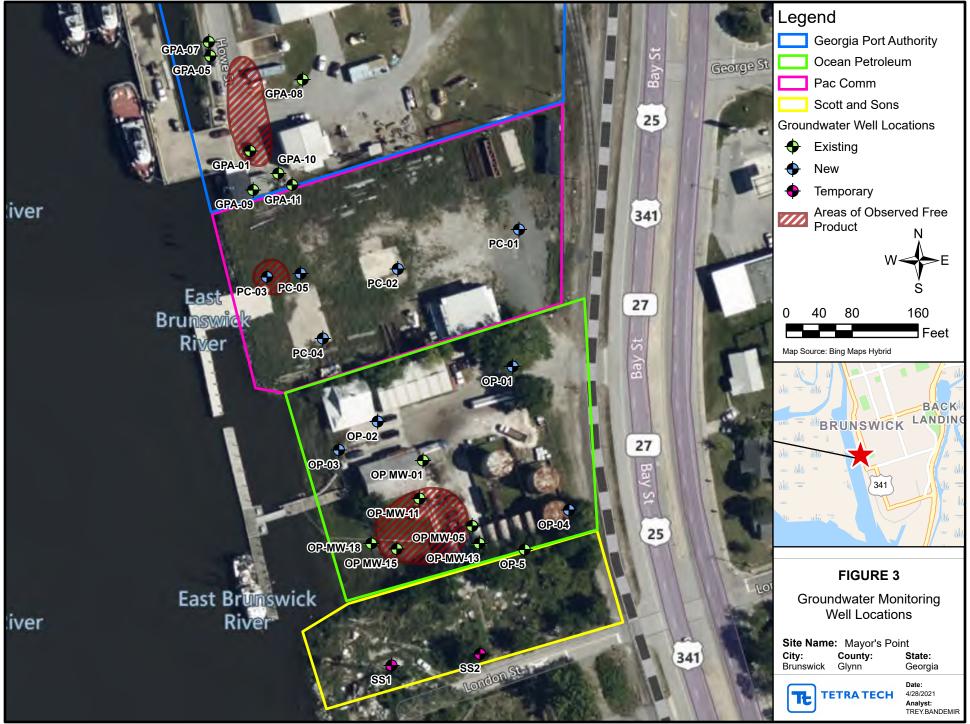
The data collected during this investigation does not provide an immediate explanation for the sporadic presence of this amount of free product in well PC-03. Two possible explanations are the existence of a preferential pathway, or a third source located on the Pac Comm property. Preferential pathways are irregularities in the subsurface, from either natural or anthropogenic causes, that channelize fluids and can transport contaminants across—or even against—broader potentiometric gradients. Building foundations and abandoned piping are potential preferential pathways and the property's long history of development leaves open the possibility that these could be routing free product to PC-03.

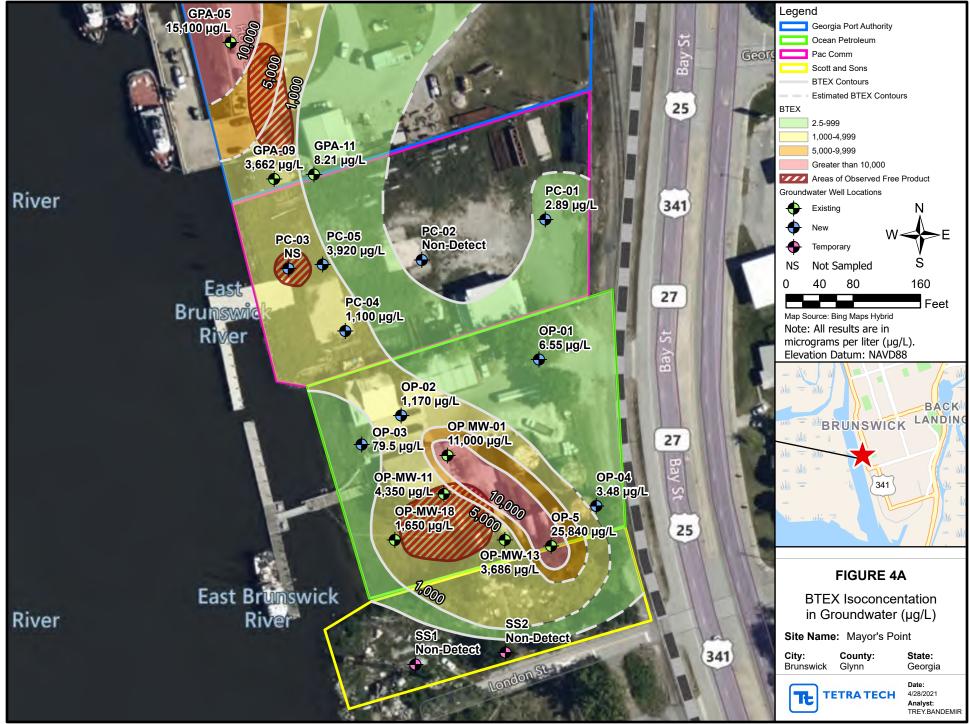
The free product in well PC-03 could also be from an on-site source, such as an unknown, unregistered UST or a discharge of petroleum on the ground surface. Tetra Tech oversaw a geophysical survey of the site in September 2020, which did not reveal the presence of a UST. It should be noted that the southern and western portions on the site were inaccessible at that time due to staged equipment and discarded materials. This prevented a thorough assessment of the area and created a data gap of subsurface conditions and features. Due to the lack of accessibility in this area, the presence of a UST or other source cannot be ruled out on the Pac Comm property. The fact that fingerprinting of free product from PC-03 showed that it was comprised of a mixture of products (*i.e.* not from a single source), and the fact that no free product was observed in well PC-04 casts doubt on the source of the free product being on the

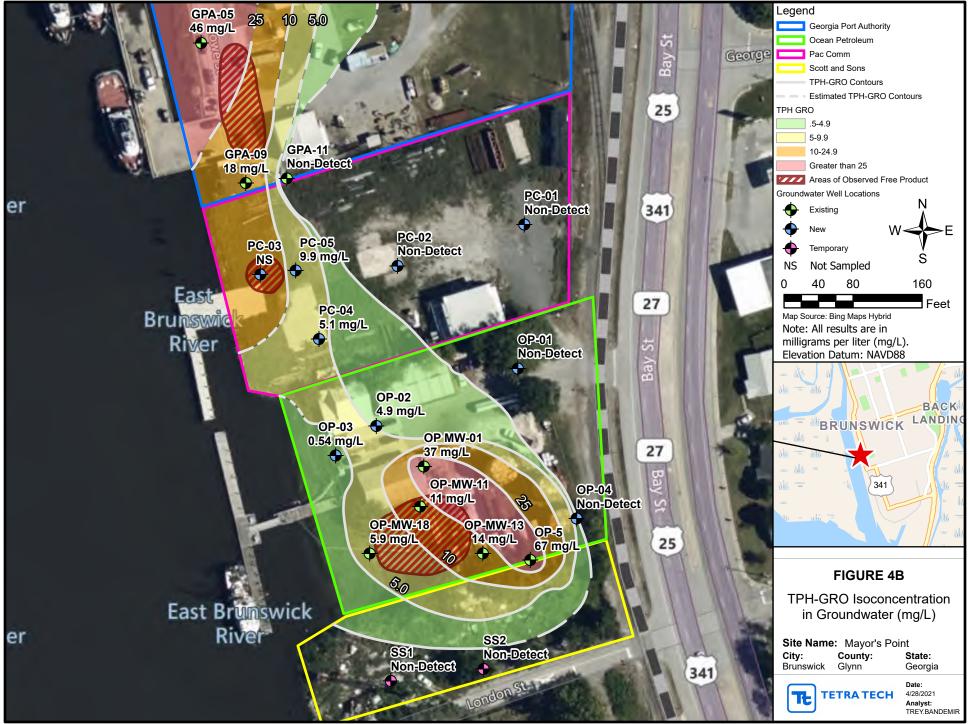
Pac Comm property. However, further investigation will likely be needed to conclusively identify the free product source in PC-03.

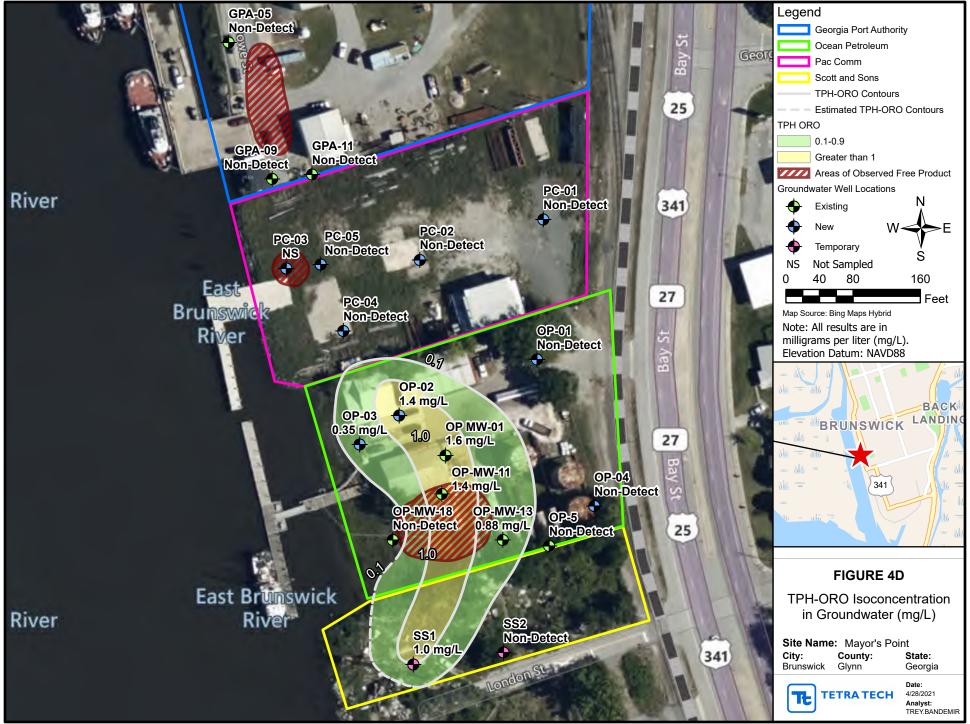

12

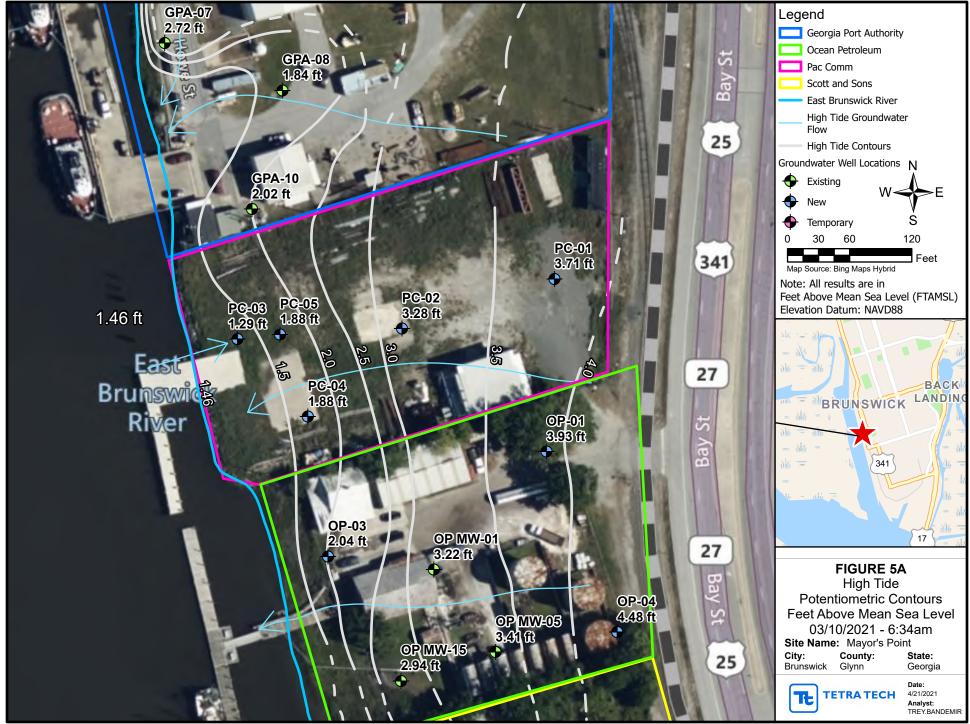

ENCLOSURE 1

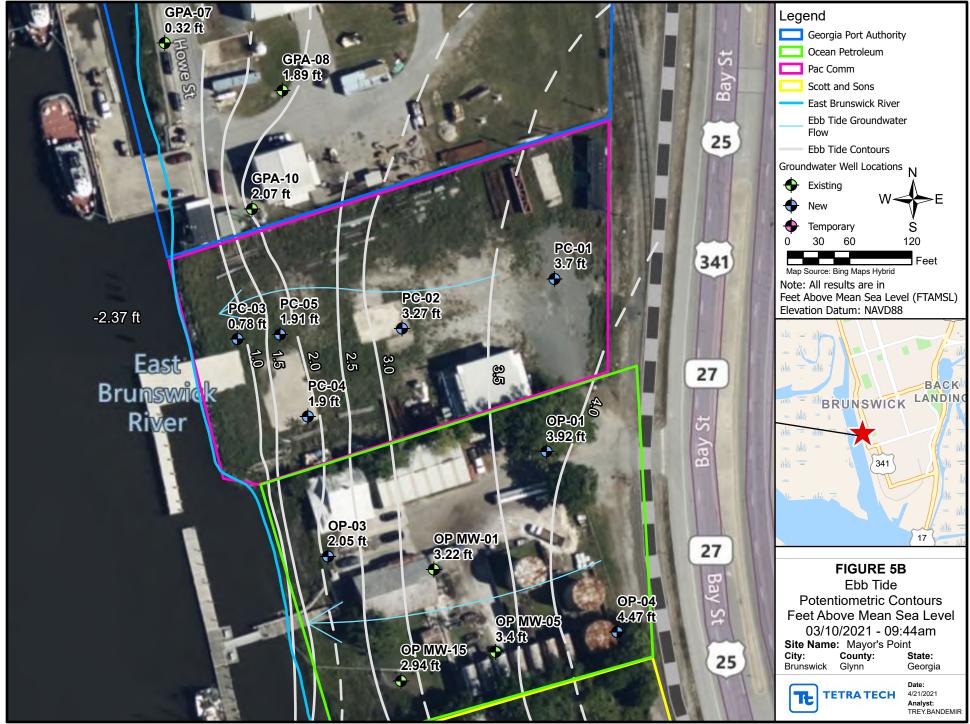

FIGURES

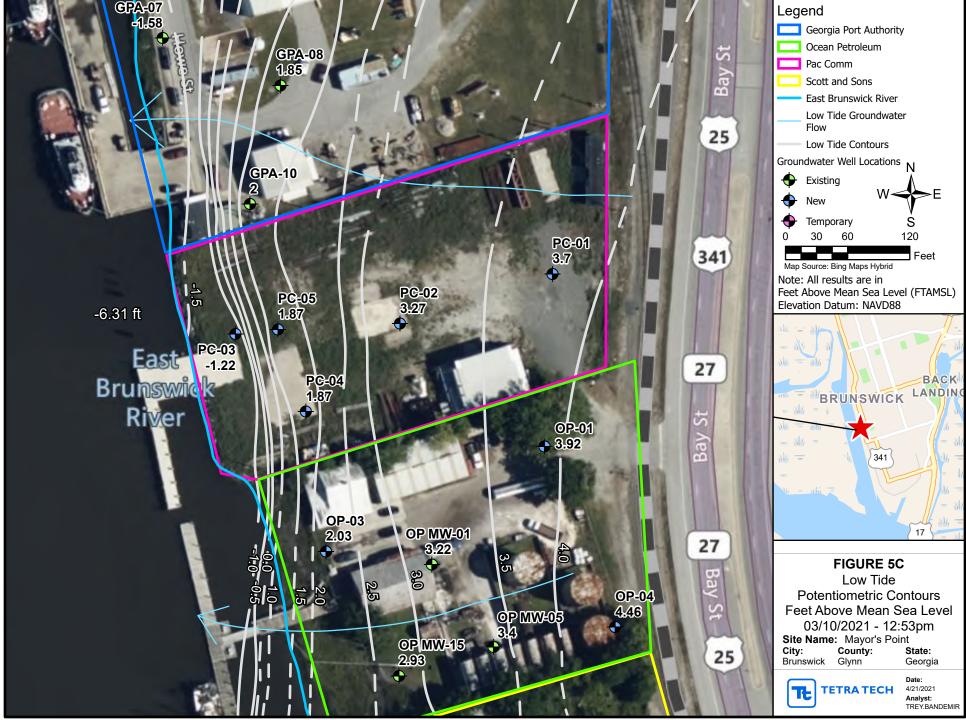

(Eleven Pages)

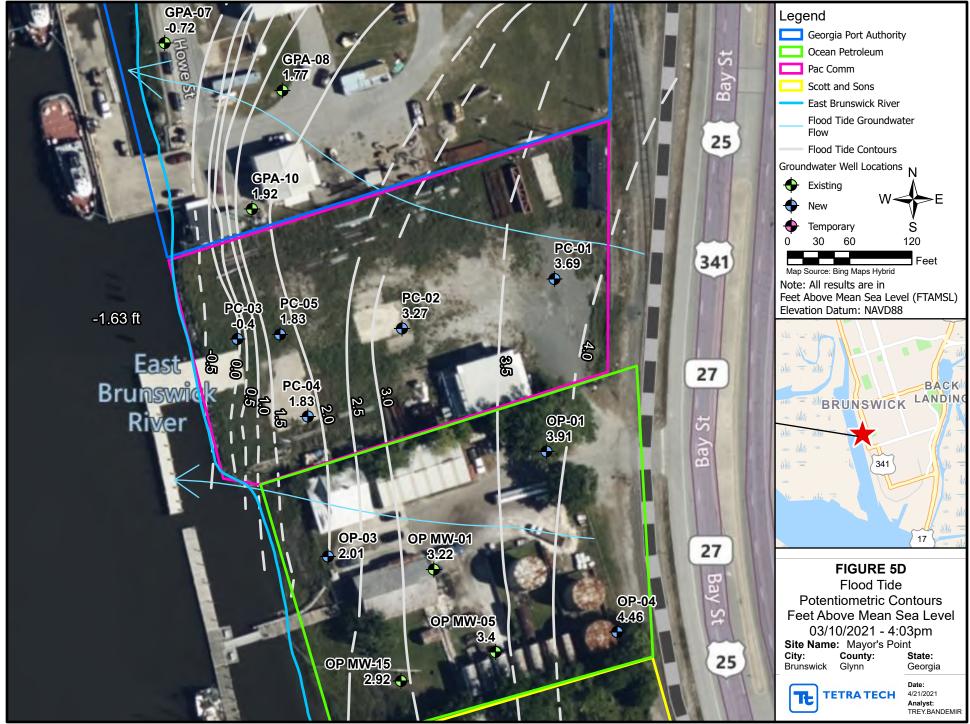












ENCLOSURE 2

LOGBOOK NOTES AND FIELD FORM DATA

(32 Sheets)

=DEFYING= MOTHER NATURE

SINCE 1916

3 sampled 9 newly

All components of this product are recyclable

Rite in the Rain

A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather.

Using a pencil or all-weather pen, Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.

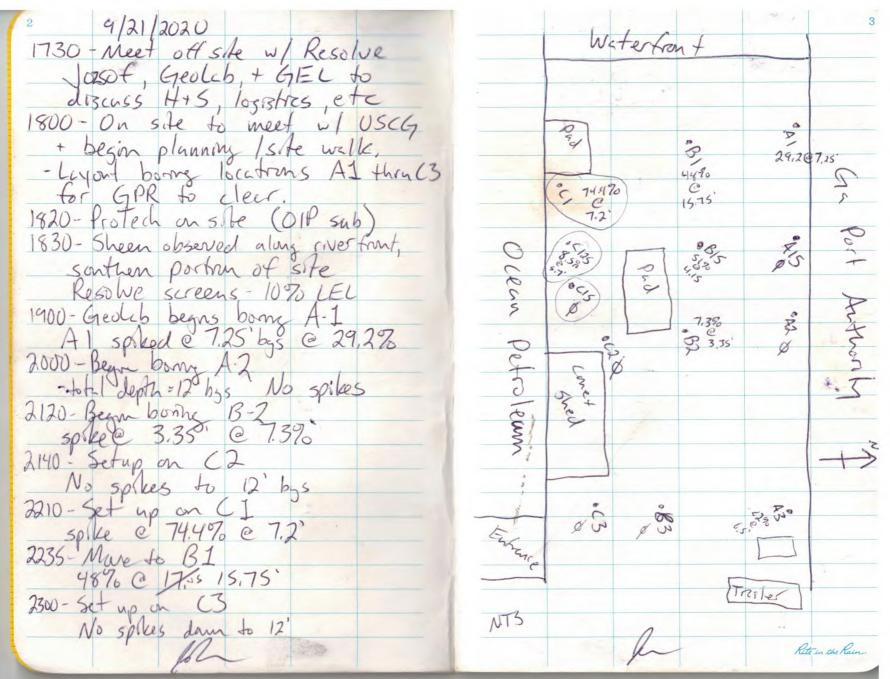
© 2017 JL DARLING LLC Tacoma, WA 98424-1017 USA www.RiteintheRain.com

> Item No. 311FX ISBN: 978-1-60134-183-9

Made in the USA US Pat No. 6,863,940

Pac Conna 5ite Survey

Rite in the Rain
ALL-WEATHER


LEVEL

Nº 311FX

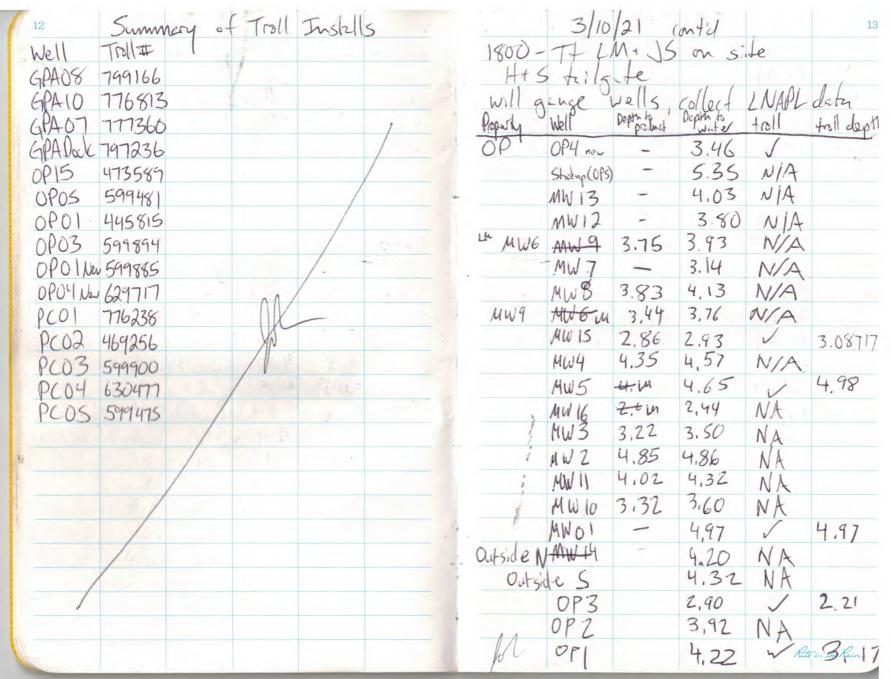
Tetra Tech

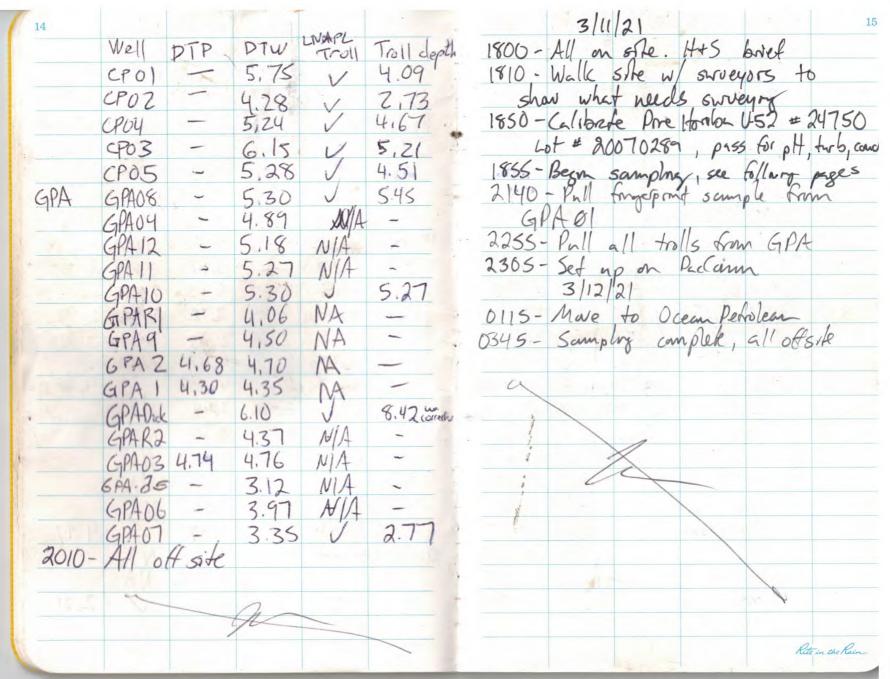
CONTENTS

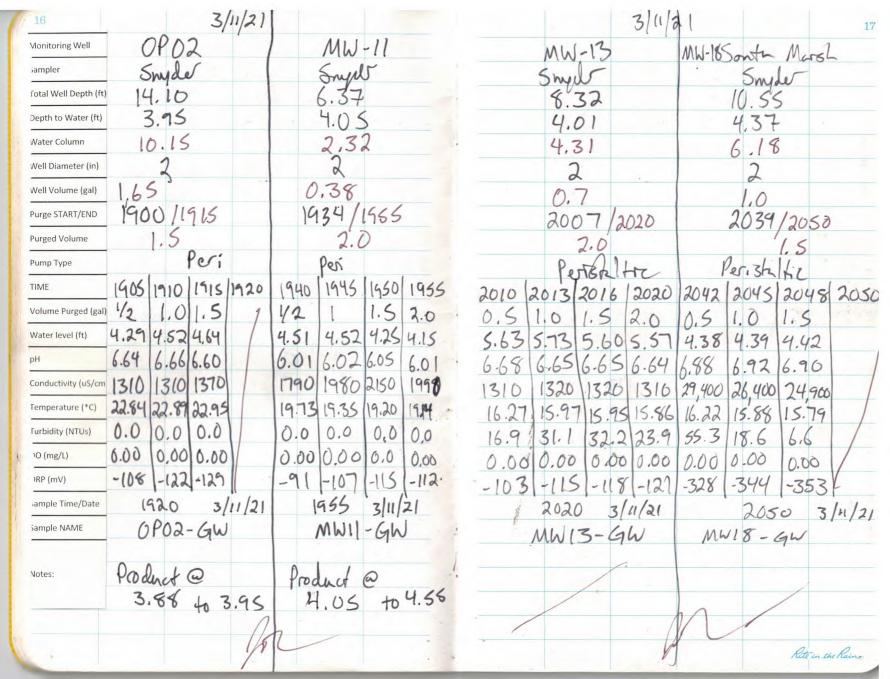
PAGE	REFERENCE	DATE
* 14	Jr - 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
•		
		(-
- 0		
		· M
		545
	1	
		. **
1		
1		
		-
141		

4 9/21/2020 contro 9/22/2020 2315-GEL off site 1730 - Tt Smyler, Resolve, Geolob, + 2320 - Setup on B-3 Protech meet off site to discuss No spikes day to W.8 ops + H+S for the day 2015 - All offsite 1800- All on site to resume OIP 1810- Protech/Geolab setting up OIP Equipment. - Resolve procured plumber to sucke mystery pipe in shoreline 1845- Setup on A-3 Small spike (42% @ 6.5) 1905 - Setup on (-15 - 10 hal @ ~ 9.5. No spiles noted 1935 - Setup on C-125' 2005-, Setup on B-15 145phe 51% @ 4,15' -glass shittered, will redo 2200: Stoll transleshooting OIP, will collect soil samples 2210 - Collect PC-5B-C3 From 7-8' 2220- Collect PC-SB-C1 from 7-8' - Diplocate sample collected by USCG 2325-Redall B-15 (B-15B) Spike 29.4% @ 5.75' bys

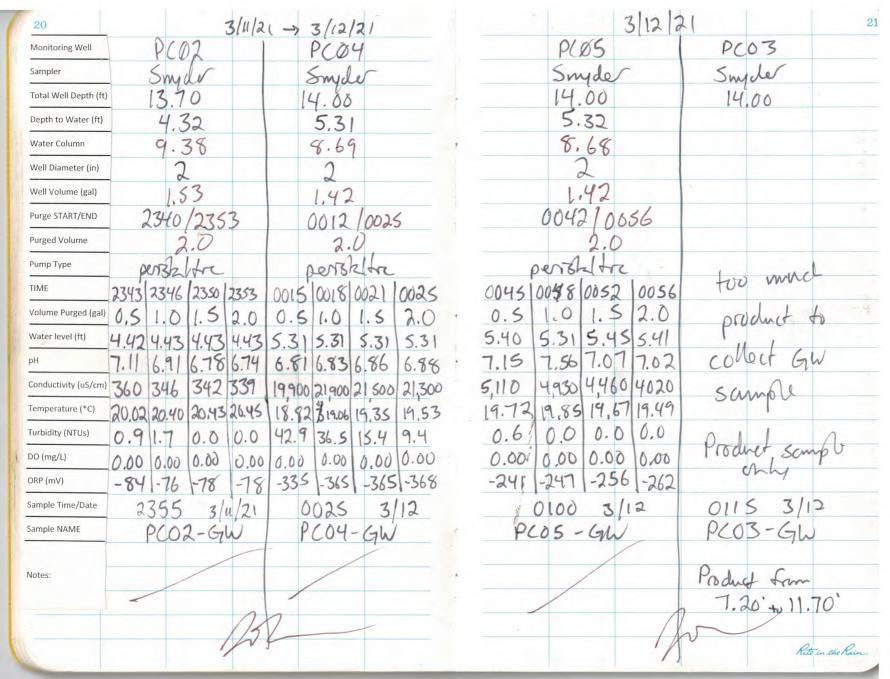
Borehole Coordinates 9/22/2020 miles -collected of Trimble GeoExplorer 6000 Proce inventory 32861 Presiden ~ 3.8f+ +30" Georgez Eust Northing (Feet) Enstry (Feet) AH (HAE, F+) Borns 416262.55 8660 \$3545.19 -93,90 B2" 8659 43.09 -92.74 416300.83 866028.79 -9199 416319,90 A2 865946,43 -96,26 416253,87 131 416363, 61 866153,55 -90,26 A3 -93.29 133 416286,43 866159.72 -92.99 416237.11 866157.14 (3 865989.38 -91.81 416179,15 416185,56 866009.03 -93.41 (125 416186.80 866626.84 -91,13 C15 866065,04 416219,79 -94,29 (2 865994,781 1416260,43 -91.74 865982.55 | -87.02 1416317.04 2355 - Set up on A-15 , - No spikes obgered 20015 - Pade up equipment 0055- All att site Rite in the Rain

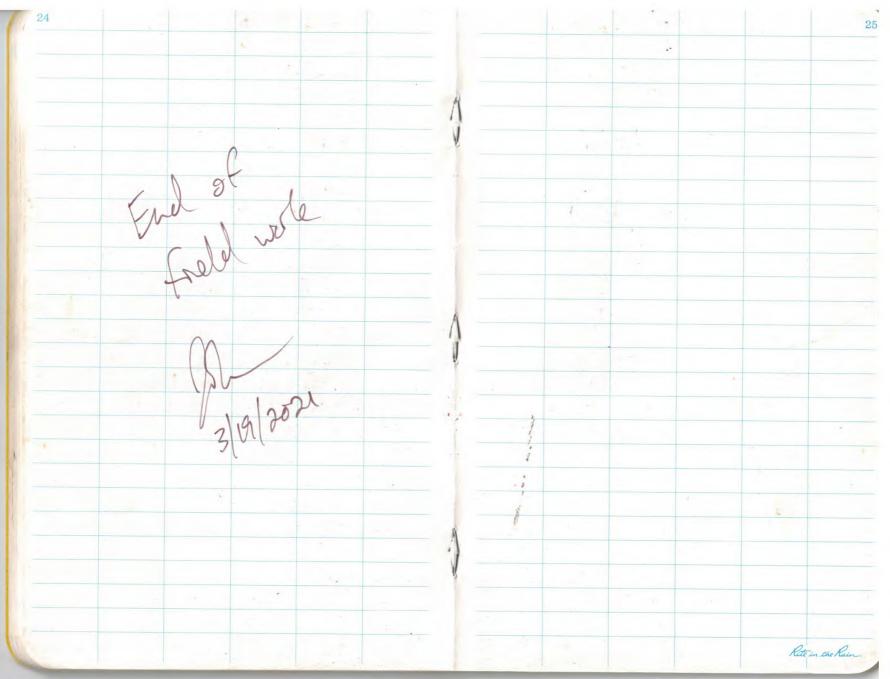

1/21/21 1000 - Back on site for 1715- On site (Singles), @ Texaco property w/ Joszef + GPRS to additional phase of work. - Sitewall of Ocean Petroleum 1800- Onto Paccoun Site PacComm, + Mayors Point GPA - Resolve EPA USEG GaDMR, + - H+S trilgete 1820-H+S Furshed Ocean Petro, - Geolab setting up on PC-1 1200 - All of site 1910 - Collect PCI-SB from 6-7 bys 1940 - Setup on PCZ 2010 - Collect PC2-SB from 4-5 bgs 2030 - Setup on PC3 (north of doch camp) 2125 - Collect PC3-5B from 5-6 bys 2140 - Setup on PC4 (su corner) 2230- Collect PCY-SB from 5-6 bss 2300- Well mobile complete. Geolab fundburg peds. Will develop wet W/ 2-stage pump. 2330 - Emish developing PCI 2345- Beyn prop PC2 2355- Frost pyon PC2 0010 - Begn proof PC3 0050 - Forsled proof PC3 0110 - Frished proof PC4 Rete in the Rain


3/9/21 contra 11 0220-All off site, Pads completed 2235- To GPA to mobil trolls 9 3/10/21 0000 - Decision made to add 1700-TI Smyder + Montonchet on site w/ EPA Rosolve, + a fifth well on Paccom (PCS) Geolob


1725-H+S tilgate e Scott + Suns
1750-Dnll grab sample well to 9'

1800-Beam pwang 551


1815-Collect 551-GW - Hund anger down to clear 0100 - Geolub beging developing wells on Ocean Petroleum 0230-More Occle to PacComm 0255- Collect PC5-SB from 5-6 bss 1820 - Only gab sample to 9' bss 1300 - Called PCS - SB-DUP 0400 - Orlles fourth out pad on 1825 Been, prong SS2 v/ per pump 1835 - Collect SS2-GW PCOS 6410 - Begn developy PCOS 0420 - Fortsled developy 1915 - Setup on OP1 (NE comer of 0440 - Dam up +, Label 1DW Ocean Petrolean) 1930 - Collect OPI-SB from 4-5' bss 0500- Tt offsite 1950- Set up on OP2, central Paccam 2015 Collect OP2-SB from 1-2' bgs 2055 Collect OP3-5B form 2-3 bas # 2020 - Collect OPS-GW from 1 puz on south side of sile 2135 - Collect OP4-5B from 6-7 by Rite in the Rain



18	3/11/21			19
Monitoring Well	GPA 09	GPAIL	GPA05	PC01
Sampler	8 mil	Smile	Smyler	Smel
Total Well Depth (ft)	(1.42	12.00	13.00	14.20
Depth to Water (ft)	4.57	5.32	4.42	5.80
Water Column	6.85	6.68	8,58	8.40
Well Diameter (in)	2	2	2	2
Well Volume (gal)	1.12	1.09	1.40	1.37
Purge START/END	2115/2130	2145/2157	2215/2227	2313/2325
Purged Volume	2.0	2.0	2.0	2.0
Pump Type	persister	persklore	perishlere	per32 tre
TIME	2118/2121/2125/2130	2148 2151 2154 2157	2218/2221/2224/2227	2315 2318 2321 2325
Volume Purged (gal)	0.5 1.0 1.5 2.6	0.5 1.0 1.5 2.0	0.5 1.0 1.5 2.0	0.5 1.6 1.5 2.0
Water level (ft)	4.60 4.57 4.63 4.61	5.35 5.38 5.31 5.32	48.70 4.77 4.82 4.85	5.81 779 5.83 5.83
рН	7.29 7.12 7.11 7.09	9.07 7.55 7.53 7.48	6.71 6.77 6.81 6.82	8.41 7.79 7.64 7.63
Conductivity (uS/cm)	680 564 556 558	686 689 683 684	18,400 18,400 18,300 18,300	575 405 397 3.95
Γemperature (*C)	17.05 17.07 17.06 17.05	16.77 17.06 17.40 17.49	19.52 19.32 19.30 19.30	16.97 17.42 17.60 17.74
Furbidity (NTUs)	46.8 61.8 70.8 63.8	84.5 115 67.7 45.7	19.3 5.1 0.0 0.0	13.3 66.3 48.9 49.3
DO (mg/L)	0.00 0.00 0.00 0.00		0.00 00.0 00.0	3.52 3.44 3.33 3.41
ORP (mV)	-322-323-325 -326	-231 -231 -232 -232	-345 -350 -356 -357	-193 -167 -153 -137
Sample Time/Date	2130 3/11	2200 3/11	2230 3/11	2325 3/11
Sample NAME	GPA09-GW	GPA11-GW	GPA05-GW	PCØ1-GW
			1	
Notes:			1	
	1			
	(15			
	1		1/	Rite in the Rain.

Monitoring Well OP & OP & OP OF OP OF	22	3/12	121	ŀ	3/12/2	1	23
Smyle Smyl	Monitoring Well				OP03	MW-01	
Total Well Depth (ft) 14.00 14.00 14.00 9.25 Depth to Water (ft) 3.5 5.25 5.25 2.96 5.00 Well Volume (gal) 3.5 1.7 1.43 1.80 0.69 Purged Volume 2.0 2.5 Pump Type Por Rel 17 2.5 2.5 2.5 2.2 2.3 2.3 2.3 2.3 2.3 Pump Type Por Rel 17 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Pump Type Por Rel 17 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Volume Pumped (gal) 0.5 1.0 1.5 2.0 2.3 2.0 2.0 2.0 2.0 Volume Pumped (gal) 0.5 1.0 1.5 2.0 2.3 2.0 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.5 Ph	Sampler	Smile	Smele		Smyle	Smile	
Well Diameter (in) Well Diameter (in) Well Diameter (in) Well Volume (sal) Well Volume (sal) Well Volume (sal) Purge START/END 132 / 145 157 / 201 Purge Volume 2.0 Pump Type Persell+TC Persell+TC Pomb Type Pomb Type Persell+TC Pomb Type Persell+TC Pomb Type Pomb Typ	Total Well Depth (ft)	L	14.00		14.00	9.25	
Water Column Well Diameter (in) Well Diameter (in) Well Volume (gal) Well Volume (gal) J 36 1.71 L.43 1.80 0.69 Purge START/END 132 / 145 1.57 / 205 2.0 2.5 Pump Type Porticity (Volume Purged (gal) 0, 5 1, 0 1, 5 2, 0 1, 5 1, 0 1, 5 2, 0 2, 5 2, 0 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Depth to Water (ft)	3.51	5.25		2.96	5.00	
Well Diameter (in) Well Volume (ga) Well Volume (ga) 132 / 145 157 / 207 Purged Volume 2.0 2.5 Pump Type Per St. I + C Down Type Per St.	Water Column	8.49 10.45	8.75	. 4.	11.04	4.25	
Well Volume (gal) 386 1.71	Well Diameter (in)	77	7		2	2	
Purped Volume 2.0 2.5 Pump Type Ports all trac Pump Type Ports all trac Pump Type Ports all trac Port	Well Volume (gal)	126 171			1.80	0.69	
Pump Type Ports	Purge START/END	132/145	1 1 -				9
Pump Type Perisk HTC TIME 135 138 142 145 200 203 206 209 Volume Purged (gal) 0, 5 1, 0 1, 5 200 1.0 1.5 2.0 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.0 2.5 2.0	Purged Volume	2.0	2.5		2.0		1
TIME	Pump Type	Perateltra	DerBhilder		perish fre	-111	
Volume Purged (gal) 0, 5 (1, 0 1, 5 25 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 1.5 2.0 0.5 1.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0	TIME				226 229 233 1235	1	6 359
Water level (ft) 3.57 3.59 3.62 3.73 4.27 430 4.32 4.32 3,15 3,23 3,19 3,15 5.06 5.01 5.02 5.00 ph 8,07 7.47 7.43 7.47 6.91 6.89 6.86 6.82 6.81 6.84 6.84 6.85 7.68 7.21 7.07 7.00 conductivity (us/cm) 480 452 436 433 253 247 242 236 7.49 17.88 17.88 17.83 18.95 18.94 18.96 16.36 16.19 16.14 16.15 17.96 17.36 17.56 17.59 17.58 17.63 18.95 18.94 18.96 16.36 16.19 16.14 16.15 18.95 18.95 18.94 18.96 16.36 16.19 16.14 16.15 18.95 18.	Volume Purged (gal)	- Ors		,			
PH	Water level (ft)	3.57 3.59 3.62 3.7				5.06 5.01 5.0	
Conductivity (us/cm) 480 452 436 433 253 247 242 236 Temperature (*C) 17.07 17.35 71.49 17.48 17.56 17.59 17.58 17.63 18.95 18.94 18.96 16.36 16.19 16.14 16.15 Turbidity (NTUs) 8.7 6.0 4.2 0.8 27.3 24.9 25.7 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	рН	8.07 7.47 7.43 7.4	169 689 686 682	+		7.68 7.21 7.0	
Temperature (*C) 17.07 17.28 17.49 17.48 17.56 17.59 17.58 17.63 18.95 18.94 18.96 16.36 16.19 16.14 16.15 17.56 17.59 17.58 17.63 18.95 18.94 18.96 16.36 16.19 16.14 16.15 17.56 17.59 17.58 17.63 18.95 18.94 18.96 16.36 16.19 16.14 16.15 17.56 17.59 17.58 17.63 18.95 18.95 18.94 18.96 16.36 16.19 16.14 16.15 17.56 17.59 17.58 17.63 18.95 18.95 18.94 18.96 16.36 16.19 16.14 16.15 18.95 1	Conductivity (uS/cm)	480 452 436 433		2		1630 1,420 1,33	50 1320
Turbidity (NTUs) 9.7 6.0 4.2 0.8 27.3 24.9 25.7 19.7 0.0 6.0 0.0 6.6 0.0 0.0 0.0 0.0 0.0 0.0	Temperature (*C)		100		18,53 18,95 18,94 18,96		
DO (mg/L) 1.51 0.92 0.61 0.59 0.18 0.10 0.00 0.00 ORP (mV) -92 -83 -72 -67 -17 -17 -18 -20 Sample Time/Date 145 3/12 210 3/12 Sample NAME OPO4-GW OPO1-GW OPO3-GW MW01-GW-DUP ©	Turbidity (NTUs)				0.0 10.0 0.0 0.0		0 0.6
ORP (mV) -92 -83 -72 -67 -17 -17 -18 -20 -359 -359 -359 -359 -226 -223 -225 -22 Sample Time/Date 145 3/12 210 3/12 235 3/12 310 3/12 Sample NAME OPO4 - GW OPO1 - GW OPO3 - GW MWOI - GW Notes: MWOI - GW DUP ©	DO (mg/L)				0.00 10.00 0.00 0.00	0.00 0.00 0.0	00.00
Sample Time/Date 145 3/12 210 3/12 235 3/12 310 3/12 Sample NAME 0P04-GW 0P01-GW 0P03-GW MW01-GW Notes: MW01-GW-DUP ©	ORP (mV)				-350; -359 -359 -359	-226 -223 -23	15 -227
Notes: OP04-GW OP01-GW OP03-GW MW01-GW NOTES: NOTES: OP03-GW MW01-GW-DUP @	Sample Time/Date	145 3/12					•
Notes: MWOI-GW-DUP @	Sample NAME	0P04-GW		9		MARIEN MWO	1-6W
315	Notes:					MWOI-GW-DU	PQ
\mathcal{M}						315	
			0		. 0	n	
Rite in the Rain	+	1/2				Rate	in the Rain.

PROJECT: Mayors Pt SITE: BORING ID: PC-1 MW ID:

DATE: 3/8/21 LOGGED BY: JWS Page 1 of 1

	Sampler Type/ Interval	Time	Recovered/Driven (in./in.)	Pocket Penetrometer (tons/ft²)	PID Reading (ppm)	Depth (feet bgs)	Lithologic Unit	USCS Type/Designation	Soil Description
		1645			0.4	0			Crush + rum
		10-0	68/64	0	0.0	1 2			distribed gravely, duk gray
					0.0	3			Light brown sound
					0.0	4 5			moist, diele bran sond
PCI-SBQ			60/60		0.0	6			moist, dark brown sound
1910	0				0.0	- 7			
					0,0	- 9			Schrafed brown sound
					0,0	10			
						12			
						13			
						14			
						16			
						17			
						19			
						20			
						22			
						23			
						25			

PROJECT: Mayors Paint SITE:
BORING ID: PC-2 MW ID:

DATE: 3/8/21 LOGGED BY: JW S

	BOH	KING I	D: P(<u> </u>	MW IE): 		Page 1 of 1
	Sampler Type/ Interval	Time	Recovered/Driven (in./in.)	Pocket Penetrometer (tons/ft²)	PID Reading (ppm)	Depth (feet bgs)	Lithologic Unit	USCS Type/Designation	Soil Description
		1940			0.0	0			(murete
						1			Duk boun dy clay w/ subble
			68/60		0.0	2			Date Dissert of City of Marie
					0.0	3			Day beams sund
					0.0				Dry brown sund, med-gran
PC2-5B 0	1				0.6	4			
2010	10					. 5			Moist bonn sand, med-gran
	9				0.0	6			Wet brom med-szin sund
			1		0.0	. 7	7		
			90/6		0.0				Dack gray ctay, schooled subtrated brown wed-gram sand
					0.0	8			in baked bown med
					0.0	9			Sand
	-				0.0	10			
						11			
						40			
						12			
						13			
	-					14			
						15			
						16			
						10			
						17			
	-	-				18		-	
						19			
						20			
						20			
						21			
	-	-				22			
						23			
						24			
						25			
						1 -0	1		

PROJECT: Mujors Pernt SITE:
BORING ID: PC3 MW ID: PC3-SB@

DATE: 3/8
LOGGED BY: JUS
Page 1 of 1

	10	-					rage 1 of 1
Sampler Type/ Interval Time	Recovered/Driven (in Jin.)	Pocket Penetrometer (tons/ft²)	PID Reading (ppm)	Depth (feet bgs)	Lithologic Unit	USCS Type/Designation	Soil Description
3050			0.4	0			Loanny duk sand w/ organics
		-	3.2	1			Dark gray / black mittled gravely sound
	66/60	_		2			
			11.1	3			SAA
		- 4	543				Sutrated, gray sand w/ odor Med-samed
8			1212	4			School of sand by oder
7		-	_	5			med-samed
		_	3.56	6			
	60/60		915	7			SAA
	100		853	'			
		-	1082	8			Black, situated, fine-gramed sand ul oder
		-	_	9			sefurfed , gray sund w/ odo/
			1153	10			327021001, gray sand 3/ 8000
				11			,
				12			
				13			
				14			
				14			
				15			
				16			
				17			
				18			
				19	-	+	
				20			
				21			
				-			
				22			
	-	-		23	-	-	+
				24			
	-	-		25		-	

PROJECT: PCY SITE: Mayors port BORING ID: PCY DATE: 3/8 LOGGED BY: JWS MW ID: PCY Page 1 of 1 Recovered/Driven (in./in.) USCS Type/Designation Sampler Type/ Interval Depth (feet bgs) Soil Description Ourk brain moist gravely sond wooder Concrete pul 3210 24/6 2 No recovery too soft coarse gravely sund w/ odor 3 5 6 No recovery to soft 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

DATE: 3/10/21 PROJECT: Mayors Pont SITE: Paccom BORING ID: PC5 MW ID: JW 5 Page 1 of 1 PC5 USCS Type/Designation Sampler Type/ Interval Depth (feet bgs) Soil Description Lithologic Unit 245 Grevelly dark brown sund w/ odor PC5-5BC 255 Most durk brown ₹PC5-58-DUP @300 sand 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PROJECT: Mayors Pont DATE: 3/4 LOGGED BY: JWS BORING ID: OP 1 MW ID: Page 1 of 1 USCS Type/Designation Sampler Type/ Interval Depth (feet bgs) Soil Description 1915 Dry grenelly sand of organies 0.0 Light bram dry some 60/66 0.0 0.2 Moist dark bran course send 6P1-SB P 1930 0.0 saturated boan / 15th brown med-graned sand 0.0 60/60 0.0 0.0 10 11 12 13 14 16 17 18 19 20 21 23 24

PROJECT: Mayors fort
SITE:
BORING ID: OP2 MW ID: OP2

DATE: 3/9/21 LOGGED BY: JW 5 Page 1 of 1

	_		01				U	Pox	
	Sampler Type/ Interval	Time	Recovered/Driven (in./in.)	Pocket Penetrometer (tons/ft²)	PID Reading (ppm)	Depth (feet bgs)	Lithologic Unit	USCS Type/Designation	Soil Description
		2000			3.2	0			Concrete
					2.4	1			Loose chunky fil meters!
OP2-5B@	100		est.		279				Don't Committee Michael
2015	-0		60/66	-	-1	2			
					127				Black moist course sund
				,	7211	3			
					33.4	4			Black course sund w/ ode/
					119.4				Black conise sund w/ odo
	-				1.1	5			
			1			6			No recovery; meteral to unconsolidated
			0/60			7			100 1800001
		1	1						materal to unconsolidated
- Valley						8	-	-	
1 3000									OPT tube driven w/ no effort
THE STATE OF THE S						9			Dri tube driven wi no etter
						10			
						10			
						11		-	
	-	-	-		-	1	-	-	
	-	1				12			
						13			
						13			
						14		_	
			-	-				-	
	-	+	-	-	-	15			
						100			
						16			
						17		-	
		-		-	-			-	
	-	-	-	-	-	18	-	+	-
		1		-		10			
						19			
						20			
		-			-			-	
	_	+-	-	-	-	21	-	-	-
		-	1	-	1	1			
						22			
						23			
								-	
		+-	-	-	-	24	-	+	-
		+	-	-	1	25	-	-	
					1	1 20			

PROJECT: Mayors Part SITE: OP BORING ID: OP3 MW ID: DATE: 3/9/21 LOGGED BY: JWS MW ID: OP3 Page 1 of 1 Recovered/Driven (in./in.) USCS Type/Designation Sampler Type/ Interval Depth (feet bgs) Soil Description Lithologic Unit 3040 Morst derk sand w/ oganics 0P3-5B @ 2055 Course black sund wet w/ odor 100 Dak gray sity sand Morst 13ht gray fine sand Dak gray wet sith 21.3 3.2 1.8 1.0 11 12 13 14 15 16 17 18 19 20 21 22

23

24

PROJECT: Mayors Pornt SITE: Ocem Petroleum BORING ID: OP4 MV

OP4-5B @ 2155

MW ID:

DATE: 3 19 21 LOGGED BY: Ja

Page 1 of 1 OP4 USCS Type/Designation Sampler Type/ Interva Soil Description Lithologic Unit 2135 Duk bonn damp med-gramed sand

Light brum damp

wed-gramed sund

Santizfed uniform

wed-gramed sand 60/66 0.0 63,3 60/60 12.7 Superted dark bran med-graned soud 0,4 10 11 12 13 14 15 17 18 20 21 24

Boring ID:

Monitoring Well ID: PC 1	
Project Number:	Project Name: Mayors Pont
Client: Resolve Marine	
Site:	
Borehole Location: Eastern Pailan	
Northing: Easting:	
Logged By: Swide	
Reviewed By:	Review Date:
Drilling Contractor: Geolab	
	Priloe
Sampler Type:	
Borehole Diameter (Surface Casing):	to: feet bgs
Borehole Diameter (Well): \$ 1/4	to: feet bgs
Drill Start Date: 3/8	Drill Start Time: 1845
Drill Finish Date: 314	Drill Finish Time: 1915
Total Borehole Depth (feet bgs):	
Soil Boring Backfill Date:	Soil Boring Backfill Time:
Ground Surface Reference Elevation (feet NGVD): -	•
Depth to Target Zone (feet bgs):	
Well Completion Date: 3/8	Well Completion Time:
Screen Interval (feet bgs): 5 to	10 Total Well Depth (feet bgs): 15
Well Diameter: 2	Well Casing Material: PVC
BOREHOLE LOCATION MAP	NOTES/REMARKS
	N filter 3 to 15
	bent 1.5 to 3
	DENT 113 70 3
	~ .
	-
~	

Boring ID: PC2				
Monitoring Well ID:				
Project Number:		Project Name:	Mayors Por	-
Client: Resolve Marme			1	
Site:				
Borehole Location: Central F	Ec Com	~		
Northing:	Easting:			
Logged By: Smyll				
Reviewed By:			Review Date:	
Drilling Contractor: Geold				
Drill Rig Type/Method: (geoprob	e.			
Sampler Type: DP7				_
Borehole Diameter (Surface Casing):			to:	feet bgs
Borehole Diameter (Well): 8 /4			to:	feet bgs
Drill Start Date: 3/8/21		Drill Start Time		
Drill Finish Date: 3/8/3/		Drill Finish Tin	ne:	
Total Borehole Depth (feet bgs):				
Soil Boring Backfill Date:		Soil Boring Ba	ckfill Time:	
Ground Surface Reference Elevation (feet	NGVD):			
Depth to Target Zone (feet bgs):				
Well Completion Date: 3/8		. /	Well Completion Ti	
Screen Interval (feet bgs): 14	to	11	Total Well Depth (fe	A /
Well Diameter: 2			Well Casing Materi	al: PVC
BOREHOLE LOCATION MAP			NOTES/REMARKS	
BOREHOLE LOCATION WAP		,t.	NOTEONEWARKS	
		N	Screen 14;	to 4
			<1 14	425
			2 1 2 i	10 0.3
			Bent 2.5	to 1.5
			X.	
			~	

Borning ID. PC 5			
Monitoring Well ID: PC3			
Project Number:	Project Na	me: Mayors P	ont
Client: ROSTWE Mane			
Site: Mayor3 Pond			
Borehole Location: She N side of	dock ro	amp	
Northing: Easting:		/	
Logged By:			
Reviewed By:		Review Date:	
Drilling Contractor: (geo Lab			
Drill Rig Type/Method: Geo Dobe			
Sampler Type: OFT			
Borehole Diameter (Surface Casing):		to:	feet bgs
Borehole Diameter (Well): & 1/4		to:	feet bgs
Drill Start Date: 3/4	Drill Start		
Drill Finish Date: 3/4	Drill Finish		
Total Borehole Depth (feet bgs): 14			
Soil Boring Backfill Date: —	Soil Boring	Backfill Time:	
Ground Surface Reference Elevation (feet NGVD):			
Depth to Target Zone (feet bgs):			
Well Completion Date: 3/8		Well Completion	Time: 2200
Screen Interval (feet bgs): 4 to	14	Total Well Depth	- /
Well Diameter: 2		Well Casing Mate	
BOREHOLE LOCATION MAP	†	NOTES/REMARKS	
	N	14 72.5	sund
		$\begin{array}{c} 14 \rightarrow 2.5 \\ 2.5 \rightarrow 1.5 \end{array}$	e pa L
		2.5 7 1.5	DENT
NAME OF THE OWNER OWNER OF THE OWNER OWNE			

T

Boring ID: BOCY			
Monitoring Well ID: PCY		V	
Project Number:	Project Nan	ne: Mayors	Port
Client: Resolve Mone	1,	3012963	101-11
Site: Paclan		7	
Borehole Location: SW comes of P	Lila		
Northing: Easting	CC	\ \	
Logged By: JwS	- W.	2	
Reviewed By:		Review Date:	
Drilling Contractor: Grealch			
Drill Rig Type/Method: (102 Pouls		199	
Sampler Type:			
Borehole Diameter (Surface Casing):		to:	feet bgs
Borehole Diameter (Well): 8 1/4		to:	feet bgs
Drill Start Date: 3/4	Drill Start T	ime:	
Drill Finish Date: 3/6	Drill Finish	Time:	
Total Borehole Depth (feet bgs):			
Soil Boring Backfill Date:	Soil Boring	Backfill Time:	
Ground Surface Reference Elevation (feet NGVD):		
Depth to Target Zone (feet bgs):			
Well Completion Date: 318		Well Completion	Time:
Screen Interval (feet bgs): 4 to 14 to)	Total Well Depth	
Well Diameter: 2		Well Casing Mar	terial: PVC
BOREHOLE LOCATION MAP		NOTES/REMARK	S
BOREHOLE LOCATION MAP	1	WI I O	
	N	14 to 2.	5 sund
		25 4	1.5 Rocks Or
		010 10	(1) Designiff

Boring ID: PCM 5			
Monitoring Well ID: PC場 5	- 10		
Project Number:	Project Name	: Mayors Po	mt
Client: Pessive Mome			
Site: Pac Com			4.5
Borehole Location: By dock rawsp			
Northing: Easting:			
Logged By: JWS			
Reviewed By:		Review Date:	
Drilling Contractor: Geoleb			
Drill Rig Type/Method: (900)			
Sampler Type: June auges + DPT			
Borehole Diameter (Surface Casing): 8V4		to:	feet bgs
Borehole Diameter (Well): 874		to:	feet bgs
Drill Start Date: 3/10/21	Drill Start Tin	ne: 230_	
Drill Finish Date: 3/10/2/	Drill Finish Ti	me: 300	
Total Borehole Depth (feet bgs):			
Soil Boring Backfill Date:	Soil Boring B	ackfill Time:	****
Ground Surface Reference Elevation (feet NGVD):	-		
Depth to Target Zone (feet bgs):			60.
Well Completion Date: 3/10		Well Completion	Time: 350
Screen Interval (feet bgs): 14 to 4 to		Total Well Depth	
Well Diameter: 2		Well Casing Mate	erial: NC
		NOTES/REMARKS	
BOREHOLE LOCATION MAP	.t.	Λ	
	N	Sand 14	to 2.5
		Bent 2	5 to 1.5
		Benil a	3 40 11)

H

Boring ID: OP 1

Page 1 of 1

Monitoring Well ID: OPI	, A
Project Number:	Project Name: Mayors Point
Client: Resolve Marre	
Site: Ocean Petrolema	- W - W
Borehole Location: NE comes of ste	The Lan
Northing: Easting:	
Logged By: JW 5	
Reviewed By:	Review Date:
Drilling Contractor: Geolas	P 0 1
Drill Rig Type/Method: (10) Proble	3st
Sampler Type: () PT	
Borehole Diameter (Surface Casing):	to: feet bgs
Borehole Diameter (Well): 81/4	to: feet bgs
Drill Start Date: 3/9/2)	Drill Start Time: 1915
Drill Finish Date: 3/9/2\	Drill Finish Time: 1930
Total Borehole Depth (feet bgs):	Jan 199
Soil Boring Backfill Date:	Soil Boring Backfill Time:
Ground Surface Reference Elevation (feet NGVD):	•
Depth to Target Zone (feet bgs):	
Well Completion Date: 3/9/2)	Well Completion Time: 1950
	4 Total Well Depth (feet bgs): 14
Well Diameter: 2	Well Casing Material: PUC
BOREHOLE LOCATION MAP	Notes/REMARKS Sand - 14 to 2.5 Bent - 2.5-1.5

Boring ID: 0P2		
Monitoring Well ID: OP2		
Project Number:	Project Name	Mayors Pant
Client: Resolve Mane		
Site: Ocean Petrolpun		
Borehole Location: Pac Comm Pappy	Ine / Ce	ntel
Northing: Easting:	1	
Logged By: J S		4.1
Reviewed By:		Review Date:
Drilling Contractor: (geolab		
Drill Rig Type/Method: Geolobe		
Sampler Type:		
Borehole Diameter (Surface Casing): ४ /५।		to: feet bgs
Borehole Diameter (Well): 8 1/4		to: feet bgs
Drill Start Date: 3/5/21	Drill Start Tim	
Drill Finish Date: 3/9/21	Drill Finish Tir	me:
Total Borehole Depth (feet bgs): 14	1	
Soil Boring Backfill Date:	Soil Boring Ba	ackfill Time:
Ground Surface Reference Elevation (feet NGVD):	_	
Depth to Target Zone (feet bgs):		- 0.126
Well Completion Date: 3/9/2		Well Completion Time: 2025
Screen Interval (feet bgs): 4-14 to		Total Well Depth (feet bgs): Well Casing Material:
Well Diameter: 2		Well Casing Material:
BOREHOLE LOCATION MAP		NOTES/REMARKS
BONEHOLE LOOMHON WAY	1	4 1 1111 00
	N	Dand 14 to 2.5
	W	Bent 25 to 1.5
		2000

Boring ID: 093		
Monitoring Well ID: 093		
Project Number:	Project Name	e: Myos Part
Client: Resolut Magne		
Site: Ocean Reholen		
Borehole Location: West side of	OP	
Northing: Easting:		
Logged By: US		
Reviewed By:		Review Date:
Drilling Contractor: Geolab.		
Drill Rig Type/Method: (ges Palse		
Sampler Type: OPT		
Borehole Diameter (Surface Casing):		to: feet bgs
Borehole Diameter (Well): \$ 1/4		to: feet bgs
Drill Start Date: 3/9	Drill Start Tin	ne: 2040
Drill Finish Date: 3/5	Drill Finish Ti	ime: 210
Total Borehole Depth (feet bgs):		
Soil Boring Backfill Date:	Soil Boring B	Backfill Time:
Ground Surface Reference Elevation (feet NGVD):	_	
Depth to Target Zone (feet bgs):		
Well Completion Date: 3/1	1//	Well Completion Time: 2110
Screen Interval (feet bgs): 4 to	19	Total Well Depth (feet bgs): 14
Well Diameter: 2		Well Casing Material: PVC
L DODELIO E L CONTION MAD		NOTES/REMARKS
BOREHOLE LOCATION MAP	.t.	
	W	Sand 14 to 2.5
		But 2.5 to 1.5

Boring ID: 0P4-5B	
Monitoring Well ID: 0P4-SB	
Project Number:	Project Name: Mayors Point
Client: Resolve Manue	
Site: Ocean Petroleum	
Borehole Location: SE Com	
Northing: Easting:	
Logged By: J S	
Reviewed By:	Review Date:
Drilling Contractor: Geo Lub	
Drill Rig Type/Method: Geolope	
Sampler Type: OPT	
Borehole Diameter (Surface Casing): 4 /4	to: feet bgs
Borehole Diameter (Well): 4 1/4	to: feet bgs
Drill Start Date: 3/9/2	Drill Start Time: 2 13 S
Drill Finish Date: 3/9/21	Drill Finish Time: 2205
Total Borehole Depth (feet bgs): 14	
Soil Boring Backfill Date:	Soil Boring Backfill Time:
Ground Surface Reference Elevation (feet NGVD):	_
Depth to Target Zone (feet bgs):	
Well Completion Date: 3/9/21	Well Completion Time: 2230
Screen Interval (feet bgs): 4 to]	4 Total Well Depth (feet bgs): 14
Well Diameter: 2	Well Casing Material: PVC
BOREHOLE LOCATION MAP	NOTES/REMARKS Sand 14 to 2.5 Bent 2.5 to 1.5

ENCLOSURE 3

TETRA TECH DATA VALIDATION REPORT

(16 Sheets)

Site Name	Brunswick	Project No.	103Z7212
Data Reviewer (signature and date)	Fuhane Kalmen 4/15/21	Technical Reviewer (signature and date)	Jesaca A. Vickers April 20, 2021
Laboratory Report No.	680-189047-1	Laboratory	Eurofins TestAmerica/Savannah, GA
Analyses	Volatile organic compounds (VOCs) by SW-846 Method 8260B and gasoline range organics (GRO), diesel range organics (DRO), and oil range organics (ORO) by SW-846 Methods 8015C/8015D		
Samples and Matrix	Samples and Matrix Three groundwater and ten soil samples (including one field duplicate)		ate)
Field Duplicate Pairs	PC5-SB/PC5-SB-DUP		
Field Blanks	Trip Blank 1 and Trip Blank 2		

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Organic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No rejection of the data was required for this data package. The results may be used as presented based on the findings of this validation effort.

Data completeness:

Within Criteria	Exceedance/Notes
N	Sample PC5-SB was inadvertently not marked for analytical method 8015D ORO on the chain of custody (COC); however, the laboratory analyzed the sample for this method. In addition, the laboratory noted that IDs on the sample containers did not match the COC and were logged as per the COC.

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
	VOCs: The method blank for preparation batch 680-660167/12 (analytical batch 660167) contained toluene above the method detection limit (MDL). The toluene result for OP4-SB was qualified as estimated, possibly biased high (flagged J+). The toluene result sample PC1-SB was raised to the reporting limit and qualified as non-detect (flagged U).
N	DRO: The method blank for preparation batch 680-659183/13-A (analytical batch 659296) contained DRO above the MDL. Sample results for OP1-SB, PC1-SB, and PC2-SB were qualified as estimated, possibly biased high (flagged J+).
	DRO: The method blank for preparation batch 680-659304/1-A (analytical batch 659296) contained DRO above the MDL. Sample result for SS2-GW was qualified as estimated, possibly biased high (flagged J+).

Field blanks:

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
N	In the VOC analysis, surrogates dibromofluoromethane and 1,2-dichloroethane-d ₄ yielded recoveries above acceptance limits for sample PC2-SB. No qualifications were applied because associated sample results were non-detect.

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
NA	

Field duplicates:

Within Criteria	Exceedance/Notes
N	PC5-SB/PC5-SB-DUP: The sample difference or relative percent difference criteria were exceeded for ethylbenzene, toluene, and xylenes (total). These results in the duplicate pair were qualified as estimated (flagged J).

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

Within Criteria	Exceedance/Notes									
	DRO and ORO were analyzed at 5-fold dilutions for samples OP3-SB, PC5-SB, and PC5-SB-DUP.									
	DRO was analyzed at a 10-fold dilution for samples PC4-SB; and at a 20-fold dilution for sample PC3-SB.									
Y	GRO was analyzed at 100-fold dilutions for samples OP1-SB, OP4-SB, OP5-GW, PC1-SB, and PC2-SB; at a 1,000-fold dilution for samples OP2-SB and OP3-SB; at a 2,000-fold dilution for samples PC5-SB and PC5-SB-DUP; at a 5,000-fold dilution for sample PC4-SB; and at a 20,000-fold dilution for sample PC3-SB.									
	VOCs were analyzed at 100-fold dilutions for sample OP5-GW.									
	Xylenes (total) was analyzed at a 100-fold dilution for sample PC4-SB and at a 500-fold dilution for sample PC3-SB.									

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	

Tentatively identified compounds:

Within Criteria	Fxceedance/Notes
NA	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be
JT	biased high.
	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be
J-	biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate
INJ	concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not
n	be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate
OJ	due to deficiencies in one or more quality control criteria.

BRUNSWICK ANALYTICAL RESULTS SUMMARY EUROFINS TESTAMERICA REPORT NO. 680-196067-1

Sample Name	Method	Analyte	Lab Result	Lab Flag	Units	MDL	RL	Val Result	Val Flag
OP1-SB	8015D	C6-C10	ND		mg/Kg	3.3	13	13	U
OP1-SB	8015D	Diesel Range Organics [C10-C28]	6.0	В	mg/Kg	2.5	3.9	23	J+
OP1-SB	8015D	Oil Range Organics (C20-C36)	ND		mg/Kg	23	23	5.5	U
OP1-SB	8260B	Benzene	ND		ug/Kg	0.80	5.5	5.5	U
OP1-SB	8260B	Ethylbenzene	ND		ug/Kg	1.4	5.5	11	U
OP1-SB	8260B	Toluene	1.0	J	ug/Kg	0.92	5.5	1.0	J
OP1-SB	8260B	Xylenes, Total	ND		ug/Kg	1.2	11	11	U
OP2-SB	8015D	C6-C10	610		mg/Kg	42	170	610	
OP2-SB	8015D	Diesel Range Organics [C10-C28]	580	В	mg/Kg	2.5	3.9	580	
OP2-SB	8015D	Oil Range Organics (C20-C36)	76		mg/Kg	24	24	76	
OP2-SB	8260B	Benzene	54000		ug/Kg	280	1900	54000	
OP2-SB	8260B	Ethylbenzene	33000		ug/Kg	510	1900	33000	
OP2-SB	8260B	Toluene	4700		ug/Kg	330	1900	4700	
OP2-SB	8260B	Xylenes, Total	31000		ug/Kg	430	3900	31000	
OP3-SB	8015D	C6-C10	1200		mg/Kg	62	250	1200	
OP3-SB	8015D	Diesel Range Organics [C10-C28]	100	В		13	20	100	
OP3-SB	8015D	Oil Range Organics (C20-C36)	ND		mg/Kg	120	120	120	U
OP3-SB	8260B	Benzene	10000		ug/Kg	900	6200	10000	
OP3-SB	8260B	Ethylbenzene	13000		ug/Kg	1600	6200	13000	
OP3-SB	8260B	Toluene	24000		ug/Kg	1100	6200	24000	
OP3-SB	8260B	Xylenes, Total	71000		ug/Kg	1400	12000	71000	
OP4-SB	8015D	C6-C10	3.9	J	mg/Kg	3.3	13	3.9	J
OP4-SB	8015D	Diesel Range Organics [C10-C28]	210	В	mg/Kg	2.6	4.1	210	
OP4-SB	8015D	Oil Range Organics (C20-C36)	58		mg/Kg	25	25	58	
OP4-SB	8260B	Benzene	4.0	J	ug/Kg	0.78	5.3	4.0	J
OP4-SB	8260B	Ethylbenzene	6.8		ug/Kg	1.4	5.3	6.8	
OP4-SB	8260B	Toluene	14	В	ug/Kg	0.90	5.3	14	J+
OP4-SB	8260B	Xylenes, Total	37		ug/Kg	1.2	11	37	
OP5-GW	8015D	C6-C10	67		mg/L	5.0	10	67	
OP5-GW	8015D	Diesel Range Organics [C10-C28]	10	В	mg/L	0.067	0.30	10	
OP5-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.33	2.0	2.0	U
OP5-GW	8260B	Benzene	ND		ug/L	43	100	100	U
OP5-GW	8260B	Ethylbenzene	6200		ug/L	33	100	6200	
OP5-GW	8260B	Toluene	540		ug/L	48	100	540	
OP5-GW	8260B	Xylenes, Total	19000		ug/L	23	100	19000	
PC1-SB	8015D	C6-C10	ND		mg/Kg	3.5	14	14	U
PC1-SB	8015D	Diesel Range Organics [C10-C28]	11	В	mg/Kg	2.7	4.2	11	J+

BRUNSWICK ANALYTICAL RESULTS SUMMARY EUROFINS TESTAMERICA REPORT NO. 680-196067-1

Sample Name	Method	Analyte	Lab Result	Lab Flag	Units	MDL	RL	Val Result	Val Flag
PC1-SB	8015D	Oil Range Organics (C20-C36)	ND		mg/Kg	26	26	26	U
PC1-SB	8260B	Benzene	ND		ug/Kg	1.0	7.2	7.2	U
PC1-SB	8260B	Ethylbenzene	ND		ug/Kg	1.9	7.2	7.2	U
PC1-SB	8260B	Toluene	3.9	JB	ug/Kg	1.2	7.2	7.2	U
PC1-SB	8260B	Xylenes, Total	6.1	J	ug/Kg	1.6	14	6.1	J
PC2-SB	8015D	C6-C10	ND		mg/Kg	2.5	10	10	U
PC2-SB	8015D	Diesel Range Organics [C10-C28]	5.8	В	mg/Kg	2.2	3.5	5.8	J+
PC2-SB	8015D	Oil Range Organics (C20-C36)	ND		mg/Kg	21	21	21	U
PC2-SB	8260B	Benzene	ND		ug/Kg	0.86	5.9	5.9	U
PC2-SB	8260B	Ethylbenzene	ND		ug/Kg	1.5	5.9	5.9	U
PC2-SB	8260B	Toluene	1.1	J	ug/Kg	0.99	5.9	1.1	J
PC2-SB	8260B	Xylenes, Total	ND		ug/Kg	1.3	12	12	U
PC3-SB	8015D	C6-C10	8900		mg/Kg	550	2200	8900	
PC3-SB	8015D	Diesel Range Organics [C10-C28]	4500	В	mg/Kg	44	69	4500	
PC3-SB	8015D	Oil Range Organics (C20-C36)	260		mg/Kg	21	21	260	
PC3-SB	8260B	Benzene	130000		ug/Kg	4200	29000	130000	
PC3-SB	8260B	Ethylbenzene	360000		ug/Kg	7600	29000	360000	
PC3-SB	8260B	Toluene	850000	В	ug/Kg	5000	29000	850000	
PC3-SB	8260B	Xylenes, Total	1800000		ug/Kg	61000	550000	1800000	
PC4-SB	8015D	C6-C10	6600		mg/Kg	260	1000	6600	
PC4-SB	8015D	Diesel Range Organics [C10-C28]	2700	В	mg/Kg	27	42	2700	
PC4-SB	8015D	Oil Range Organics (C20-C36)	300		mg/Kg	26	26	300	
PC4-SB	8260B	Benzene	92000		ug/Kg	1500	10000	92000	
PC4-SB	8260B	Ethylbenzene	160000		ug/Kg	2600	10000	160000	
PC4-SB	8260B	Toluene	320000	В	ug/Kg	1700	10000	320000	
PC4-SB	8260B	Xylenes, Total	800000		ug/Kg	23000	210000	800000	
PC5-SB	8015D	C6-C10	2700		mg/Kg	88	350	2700	
PC5-SB	8015D	Diesel Range Organics [C10-C28]	1200	В	mg/Kg	13	20	1200	
PC5-SB	8015D	Oil Range Organics (C20-C36)	ND		mg/Kg	120	120	120	U
PC5-SB	8260B	Benzene	64000		ug/Kg	6400	44000	64000	
PC5-SB	8260B	Ethylbenzene	140000		ug/Kg	11000	44000	140000	J
PC5-SB	8260B	Toluene	150000		ug/Kg	7500	44000	150000	J
PC5-SB	8260B	Xylenes, Total	650000		ug/Kg	9700	88000	650000	J
PC5-SB-DUP	8015D	C6-C10	2900		mg/Kg	88	350	2900	
PC5-SB-DUP	8015D	Diesel Range Organics [C10-C28]	1400	В	mg/Kg	13	20	1400	
PC5-SB-DUP	8015D	Oil Range Organics (C20-C36)	ND		mg/Kg	120	120	120	U
PC5-SB-DUP	8260B	Benzene	26000	J	ug/Kg	6400	44000	26000	J

BRUNSWICK ANALYTICAL RESULTS SUMMARY EUROFINS TESTAMERICA REPORT NO. 680-196067-1

Sample Name	Method	Analyte	Lab Result	Lab Flag	Units	MDL	RL	Val Result	Val Flag
PC5-SB-DUP	8260B	Ethylbenzene	68000		ug/Kg	11000	44000	68000	J
PC5-SB-DUP	8260B	Toluene	42000	J	ug/Kg	7500	44000	42000	J
PC5-SB-DUP	8260B	Xylenes, Total	320000		ug/Kg	9700	88000	320000	J
SS1-GW	8015D	C6-C10	ND		mg/L	0.050	0.10	0.10	U
SS1-GW	8015D	Diesel Range Organics [C10-C28]	1.2	В	mg/L	0.093	0.41	1.2	
SS1-GW	8015D	Oil Range Organics (C20-C36)	1.0	J	mg/L	0.45	2.7	1.0	J
SS1-GW	8260B	Benzene	ND		ug/L	0.43	1.0	1.0	U
SS1-GW	8260B	Ethylbenzene	ND		ug/L	0.33	1.0	1.0	U
SS1-GW	8260B	Toluene	ND		ug/L	0.48	1.0	1.0	U
SS1-GW	8260B	Xylenes, Total	ND		ug/L	0.23	1.0	1.0	U
SS2-GW	8015D	C6-C10	ND		mg/L	0.050	0.10	0.10	U
SS2-GW	8015D	Diesel Range Organics [C10-C28]	0.46	В	mg/L	0.075	0.33	0.46	J+
SS2-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.36	2.2	2.3	U
SS2-GW	8260B	Benzene	ND		ug/L	0.43	1.0	1.0	U
SS2-GW	8260B	Ethylbenzene	ND		ug/L	0.33	1.0	1.0	U
SS2-GW	8260B	Toluene	ND		ug/L	0.48	1.0	1.0	U
SS2-GW	8260B	Xylenes, Total	ND		ug/L	0.23	1.0	1.0	U
Trip Blank 1	8260B	Benzene	ND		ug/L	0.43	1.0	1.0	U
Trip Blank 1	8260B	Ethylbenzene	ND		ug/L	0.33	1.0	1.0	U
Trip Blank 1	8260B	Toluene	ND		ug/L	0.48	1.0	1.0	U
Trip Blank 1	8260B	Xylenes, Total	ND		ug/L	0.23	1.0	1.0	U
Trip Blank 2	8260B	Benzene	ND		ug/L	0.43	1.0	1.0	U
Trip Blank 2	8260B	Ethylbenzene	ND		ug/L	0.33	1.0	1.0	U
Trip Blank 2	8260B	Toluene	ND		ug/L	0.48	1.0	1.0	U
Trip Blank 2	8260B	Xylenes, Total	ND		ug/L	0.23	1.0	1.0	U

Site Name	Brunswick		Project No.	103Z7212		
Data Reviewer (signature and date)	Farhane Kalmen 4/16/21		Technical Reviewer (signature and date)	Jesaca A. Vickers April 20, 2021		
Laboratory Report No.	680-196209-1		Laboratory	Eurofins TestAmerica/Savannah		
Analyses	Volatile organic compounds (VOCs) by SW-846 Method 8260B, gasoline range organics (GRO), diesel range organics (DRO), oil range organics (ORO) by SW-846 Method 8015C/8015D, and hydrocarbon product identification (petroleum fingerprinting) by Method 8015B.					
Samples and Matrix	Nineteen groundwater samples, including one duplicate and one trip blank					
Field Duplicate Pairs	MW01-GW/MW01-GW-DUP					
Field Blanks	Trip Blank		_			

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Organic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No rejection of the data was required for this data package. The results may be used as presented based on the findings of this validation effort.

Data completeness:

Within Criteria	Exceedance/Notes								
	The sample receipt checklist from the laboratory indicates that there was enough sample volume for MS/MSD; however, the laboratory case narrative states the laboratory was unable to run MS/MSD due to insufficient sample volume. MS/MSDs were not run for this project.								
N	Fingerprinting: Qualitative fingerprinting analysis was performed on three samples. Because the analysis was qualitative, no validation was performed on this data. The laboratory-provided fingerprinting determinations are presented below:								
	 GPA01-GW contained a petroleum product which most closely resembles unleaded gasoline. MW11-GW contained a petroleum product which most closely resembles #2 fuel oil. PC03-GW contained a petroleum product which most closely resembles gasoline/diesel/#2 fuel oil. 								

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	VOCs: Samples GPA05-GW and OP03-GW were collected in a properly preserved vial; however, the pH greater than 2 (outside the required criteria) when verified by the laboratory. The samples were analyzed outside the 7-day holding time specified for unpreserved samples, but within the 14-day holding time specified for preserved samples. Therefore, the associated VOC results were qualified as estimated, possibly biased low (flagged J-/UJ).
	DRO/ORO: Due to issues with method blank contamination, samples MW01-GW, MW01-GW-DUP, OP01-GW, OP03-GW, OP04-GW, PC04-GW, and PC05-GW were re-extracted and/or reanalyzed outside of holding time for DRO and ORO. Both sets of results were reported. See the "Re-extraction and Reanalysis" section below.

Method blanks:

Within Criteria	Exceedance/Notes
N	DRO: The method blank for preparation batch 680-660082 (analytical batch 660455) contained DRO above the method detection limit (MDL). The DRO results for samples OP03-GW, OP04-GW, PC04-GW, and PC05-GW were qualified as estimated, possibly biased high (flagged J+). The DRO result for sample OP01-GW was raised to the reporting limit and qualified as non-detect (flagged U).
	DRO: The method blank for preparation batch 680-661024 (analytical batch 661188) contained DRO above the MDL. No qualifications were applied because this method blank was associated with the re-extracted/reanalysis data that was not reported for the final validation.

Field blanks:

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
N	DRO/ORO: Surrogate o-terphenyl yielded recovery above the acceptance limits for the LCS in analysis batch 664455; however, no qualifications are applied to quality control samples.

MS/MSD:

Within Criteria	Exceedance/Notes
NA	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
NA	

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
N	The LCS recovery and relative percent difference for DRO in analysis batch 640455 was above criteria. Detected analytes in samples MW01-GW, MW01-GW-DUP, OP03-GW, OP04-GW, PC04-GW, and PC05-GW were qualified as estimated, possibly biased high (flagged J+).

Sample dilutions:

Within Criteria	Exceedance/Notes
V	GRO was analyzed at a 10-fold dilution for samples OP02-GW and PC04-GW; at a 20-fold dilution for samples MW11-GW, MW13-GW, MW18-GW, and PC05-GW; at a 50-fold dilution for sample GPA09-GW; and at a 100-fold dilution for samples GPA05-GW, MW01-GW, and MW01-GW-DUP.
Y	VOCs were analyzed at 2-fold dilutions for sample OP2-GW; at 10-fold dilutions for sample PC04-GW; at 20-fold dilutions for samples MW11-GW, MW13-GW, and MW18-GW; at 50-fold dilutions for samples GPA09-GW and PC05-GW; and at 200-fold dilutions for samples GPA05-GW, MW01-GW, and MW01-GW-DUP.

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
N	DRO/ORO: Due to issues with method blank contamination, samples MW01-GW, MW01-GW-DUP, OP01-GW, OP03-GW, OP04-GW, PC04-GW, and PC05-GW were re-extracted and/or reanalyzed outside of holding time for DRO and ORO. Based on an evaluation of both sets of data provided, the original results were reported for these samples because the method blank associated with the re-extracted/reanalyzed samples also displayed contamination.

MDLs/RLs:

Within Criteria	Exceedance/Notes
Y	

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

Other [specify]:

other [specify].	
Within	Even dones /Netes
Criteria	Exceedance/Notes
NA	

DATA VALIDATION CHECKLIST – STAGE 2A

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample Name	Method	Analyte	Lab Result	Lab Flag	Units	MDL	RL	Val Result	Val Flag
GPA05-GW	8015D	C6-C10	46		mg/L	5.0	10	46	
GPA05-GW	8015D	Diesel Range Organics [C10-C28]	5.0		mg/L	0.083	0.37	5.0	
GPA05-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.40	2.5	2.5	U
GPA05-GW	8260B	Benzene	5800	H4	ug/L	86	200	5800	J-
GPA05-GW	8260B	Ethylbenzene	2500	H4	ug/L	66	200	2500	J-
GPA05-GW	8260B	Toluene	ND	H4	ug/L	96	200	200	UJ
GPA05-GW	8260B	Xylenes, Total	6800	H4	ug/L	46	200	6800	J-
GPA09-GW	8015D	C6-C10	18		mg/L	2.5	5.0	18	
GPA09-GW	8015D	Diesel Range Organics [C10-C28]	1.6		mg/L	0.068	0.30	1.6	
GPA09-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.33	2.0	2.0	U
GPA09-GW	8260B	Benzene	1200		ug/L	22	50	1200	
GPA09-GW	8260B	Ethylbenzene	1200		ug/L	17	50	1200	
GPA09-GW	8260B	Toluene	62		ug/L	24	50	62	
GPA09-GW	8260B	Xylenes, Total	1200		ug/L	12	50	1200	
GPA11-GW	8015D	C6-C10	ND		mg/L	0.050	0.10	0.10	U
GPA11-GW	8015D	Diesel Range Organics [C10-C28]	0.18	J	mg/L	0.069	0.31	0.18	J
GPA11-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.34	2.0	2.0	U
GPA11-GW	8260B	Benzene	7.8		ug/L	0.43	1.0	7.8	
GPA11-GW	8260B	Ethylbenzene	ND		ug/L	0.33	1.0	1.0	U
GPA11-GW	8260B	Toluene	ND		ug/L	0.48	1.0	1.0	U
GPA11-GW	8260B	Xylenes, Total	0.41	J	ug/L	0.23	1.0	0.41	J
MW01-GW	8015D	C6-C10	37		mg/L	5.0	10	37	
MW01-GW	8015D	Diesel Range Organics [C10-C28]	7.6	B *+ *1	mg/L	0.077	0.34	7.6	J+
MW01-GW	8015D	Oil Range Organics (C20-C36)	1.6	J	mg/L	0.37	2.3	1.6	J
MW01-GW	8260B	Benzene	5400		ug/L	86	200	5400	
MW01-GW	8260B	Ethylbenzene	1000		ug/L	66	200	1000	
MW01-GW	8260B	Toluene	700		ug/L	96	200	700	
MW01-GW	8260B	Xylenes, Total	3900		ug/L	46	200	3900	
MW01-GW-DUP	8015D	C6-C10	38		mg/L	5.0	10	38	
MW01-GW-DUP	8015D	Diesel Range Organics [C10-C28]	6.8	B *+ *1	mg/L	0.088	0.39	6.8	J+
MW01-GW-DUP	8015D	Oil Range Organics (C20-C36)	1.6	J	mg/L	0.43	2.6	1.6	J
MW01-GW-DUP	8260B	Benzene	5200		ug/L	86	200	5200	
MW01-GW-DUP	8260B	Ethylbenzene	1000		ug/L	66	200	1000	
MW01-GW-DUP	8260B	Toluene	710		ug/L	96	200	710	
MW01-GW-DUP	8260B	Xylenes, Total	3800		ug/L	46	200	3800	
MW11-GW	8015D	C6-C10	11		mg/L	1.0	2.0	11	
MW11-GW	8015D	Diesel Range Organics [C10-C28]	12		mg/L	0.067	0.30	12	

Sample Name	Method	Analyte	Lab Result	Lab Flag	Units	MDL	RL	Val Result	Val Flag
MW11-GW	8015D	Oil Range Organics (C20-C36)	1.4	J	mg/L	0.33	2.0	1.4	J
MW11-GW	8260B	Benzene	770		ug/L	8.6	20	770	
MW11-GW	8260B	Ethylbenzene	380		ug/L	6.6	20	380	
MW11-GW	8260B	Toluene	1400		ug/L	9.6	20	1400	
MW11-GW	8260B	Xylenes, Total	1800		ug/L	4.6	20	1800	
MW13-GW	8015D	C6-C10	14		mg/L	1.0	2.0	14	
MW13-GW	8015D	Diesel Range Organics [C10-C28]	12		mg/L	0.078		12	
MW13-GW	8015D	Oil Range Organics (C20-C36)	0.88	J	mg/L	0.38	2.3	0.88	J
MW13-GW	8260B	Benzene	480		ug/L	8.6	20	480	
MW13-GW	8260B	Ethylbenzene	780		ug/L	6.6	20	780	
MW13-GW	8260B	Toluene	26		ug/L	9.6	20	26	
MW13-GW	8260B	Xylenes, Total	2400		ug/L	4.6	20	2400	
MW18-GW	8015D	C6-C10	5.9		mg/L	1.0	2.0	5.9	
MW18-GW	8015D	Diesel Range Organics [C10-C28]	3.0		mg/L	0.066	0.29	3.0	
MW18-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.32	2.0	2.0	U
MW18-GW	8260B	Benzene	600		ug/L	8.6	20	600	
MW18-GW	8260B	Ethylbenzene	230		ug/L	6.6	20	230	
MW18-GW	8260B	Toluene	190		ug/L	9.6	20	190	
MW18-GW	8260B	Xylenes, Total	630		ug/L	4.6	20	630	
OP01-GW	8015D	C6-C10	ND		mg/L	0.050	0.10	0.10	U
OP01-GW	8015D	Diesel Range Organics [C10-C28]	0.23	J B *+ *1	mg/L	0.070	0.31	0.31	U
OP01-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.34	2.1	2.1	U
OP01-GW	8260B	Benzene	0.70	J	ug/L	0.43	1.0	0.70	J
OP01-GW	8260B	Ethylbenzene	0.65	J	ug/L	0.33	1.0	0.65	J
OP01-GW	8260B	Toluene	1.4		ug/L	0.48	1.0	1.4	
OP01-GW	8260B	Xylenes, Total	3.8		ug/L	0.23	1.0	3.8	
OP02-GW	8015D	C6-C10	4.9		mg/L	0.50	1.0	4.9	
OP02-GW	8015D	Diesel Range Organics [C10-C28]	9.5		mg/L	0.088	0.39	9.5	
OP02-GW	8015D	Oil Range Organics (C20-C36)	1.4	J	mg/L	0.43	2.6	1.4	J
OP02-GW	8260B	Benzene	210		ug/L	0.86	2.0	210	
OP02-GW	8260B	Ethylbenzene	130		ug/L	0.66	2.0	130	
OP02-GW	8260B	Toluene	310		ug/L	0.96	2.0	310	
OP02-GW	8260B	Xylenes, Total	520		ug/L	0.46	2.0	520	
OP03-GW	8015D	C6-C10	0.54		mg/L	0.050			
OP03-GW	8015D	Diesel Range Organics [C10-C28]	0.97	B *+ *1	mg/L	0.069			J+
OP03-GW	8015D	Oil Range Organics (C20-C36)	0.35	J	mg/L	0.34	2.0	0.35	J
OP03-GW	8260B	Benzene	59	H4	ug/L	0.43	1.0	59	J-

Sample Name	Method	Analyte	Lab Result	Lab Flag	Units	MDL	RL	Val Result	Val Flag
OP03-GW	8260B	Ethylbenzene	4.8	H4	ug/L	0.33	1.0	4.8	J-
OP03-GW	8260B	Toluene	8.7	H4	ug/L	0.48	1.0	8.7	J-
OP03-GW	8260B	Xylenes, Total	7.0	H4	ug/L	0.23	1.0	7.0	J-
OP04-GW	8015D	C6-C10	ND		mg/L	0.050	0.10	0.10	U
OP04-GW	8015D	Diesel Range Organics [C10-C28]	0.68	B *+ *1	mg/L	0.10	0.46		J+
OP04-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.50	3.0	3.0	U
OP04-GW	8260B	Benzene	0.43	J	ug/L	0.43	1.0	0.43	J
OP04-GW	8260B	Ethylbenzene	0.41	J	ug/L	0.33	1.0	0.41	J
OP04-GW	8260B	Toluene	0.74	J	ug/L	0.48	1.0	0.74	J
OP04-GW	8260B	Xylenes, Total	1.9		ug/L	0.23	1.0	1.9	
PC01-GW	8015D	C6-C10	ND		mg/L	0.050			U
PC01-GW	8015D	Diesel Range Organics [C10-C28]	0.26	J	mg/L	0.078	0.34	0.26	J
PC01-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.38	2.3	2.3	U
PC01-GW	8260B	Benzene	ND		ug/L	0.43	1.0	1.0	U
PC01-GW	8260B	Ethylbenzene	0.59	J	ug/L	0.33	1.0	0.59	J
PC01-GW	8260B	Toluene	ND		ug/L	0.48	1.0	1.0	U
PC01-GW	8260B	Xylenes, Total	2.3		ug/L	0.23	1.0	2.3	
PC02-GW	8015D	C6-C10	ND		mg/L	0.050	0.10	0.10	U
PC02-GW	8015D	Diesel Range Organics [C10-C28]	0.34	J	mg/L	0.085	0.38	0.34	J
PC02-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.41	2.5	2.5	U
PC02-GW	8260B	Benzene	ND		ug/L	0.43	1.0	1.0	U
PC02-GW	8260B	Ethylbenzene	ND		ug/L	0.33	1.0	1.0	U
PC02-GW	8260B	Toluene	ND		ug/L	0.48	1.0	1.0	U
PC02-GW	8260B	Xylenes, Total	ND		ug/L	0.23	1.0	1.0	U
PC04-GW	8015D	C6-C10	5.1		mg/L	0.50	1.0	5.1	
PC04-GW	8015D	Diesel Range Organics [C10-C28]	1.3	B *+ *1	mg/L	0.081	0.36	1.3	J+
PC04-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.39	2.4	2.4	U
PC04-GW	8260B	Benzene	270		ug/L	4.3	10	270	
PC04-GW	8260B	Ethylbenzene	120		ug/L	3.3	10	120	
PC04-GW	8260B	Toluene	180		ug/L	4.8	10	180	
PC04-GW	8260B	Xylenes, Total	530		ug/L	2.3	10	530	
PC05-GW	8015D	C6-C10	9.9		mg/L	1.0	2.0	9.9	
PC05-GW	8015D	Diesel Range Organics [C10-C28]	0.96	B *+ *1	mg/L	0.068	0.30	0.96	J+
PC05-GW	8015D	Oil Range Organics (C20-C36)	ND		mg/L	0.33	2.0	2.0	U
PC05-GW	8260B	Benzene	1300		ug/L	22	50	1300	
PC05-GW	8260B	Ethylbenzene	760		ug/L	17	50	760	
PC05-GW	8260B	Toluene	460		ug/L	24	50	460	

Sample Name	Method	Analyte	Lab Result	Lab Flag	Units	MDL	RL	Val Result	Val Flag
PC05-GW	8260B	Xylenes, Total	1400		ug/L	12	50	1400	
Trip Blank	8015D	C6-C10	ND		mg/L	0.050	0.10	0.10	U
Trip Blank	8260B	Benzene	ND		ug/L	0.43	1.0	1.0	U
Trip Blank	8260B	Ethylbenzene	ND		ug/L	0.33	1.0	1.0	U
Trip Blank	8260B	Toluene	ND		ug/L	0.48	1.0	1.0	U
Trip Blank	8260B	Xylenes, Total	ND		ug/L	0.23	1.0	1.0	U

ATTACHMENT 1

SURVEYOR'S DELIVERABLE

(One Page)

JACKSON SURVEYING, INC.

Surveyors and Land Planners

Post Office Box 1031 Brunswick, GA 31521 207 Rose Drive Brunswick, GA 31520 Phone: (912) 265-3856 brunswicksurveyor.com

March 16, 2021

Georgia Port Authority - Bay Street - Monitoring Wells

Well ID	Latitude (NAD83)	Longitude (NAD83)	Northing (Georgia East)	Easting (Georgia East)	Top of Casing Elevation (NAVD88)	Ground Surface Elevation (NAVD88)
MW 01	31.142199	81.495688	416035.087	866075.450	8.17	6.8
MW 05	31.142011	81.495525	415966.996	866126.749	8.04	7.28
MW 15	31.141946	81.495775	415942.700	866048.794	5.83	N/A
MW OP01	31.142467	81.495390	416133.076	866167.980	8.13	8.4
MW OP02	31.142310	81.495839	416075.181	866027.824	5.93	6.22
MW OP03	31.142229	81.495968	416045.248	865987.771	4.90	5.38
MW OP04	31.142057	81.495203	415984.242	866227.639	7.82	8.27
MW PC01	31.142860	81.495369	416276.096	866173.768	9.45	9.62
MW PC02	31.142747	81.495772	416234.051	866048.012	7.55	7.88
MW PC03	31.142723	81.496207	416224.523	865912.016	7.20	7.6
MW PC04	31.142547	81.496021	416160.873	865970.281	7.08	7.53
MW PC05	31.142734	81.496095	412228.711	865946.861	7.13	7.63
MW GPA07	31.143396	81.496400	416468.973	865849.936	5.52	5.73
MW GPA08	31.143289	81.496088	416430.680	865948.084	7.11	7.42
MW GPA10	31.143019	81.496169	416332.455	865923.139	7.11	7.5
DOCK	31.143203	81.496348	416398.726	865866.641	6.60	N/A

Savid E. Laudy

David E. Dowdy, PLS #3395 Jackson Surveying, Inc. GA & FL Land Surveyors

ATTACHMENT 2

LABORATORY ANALYTICAL DATA PACKAGES AND FINGERPRINT DATA

(114 Pages)

2

3

4

6

7

9

10

15

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-196209-1 Client Project/Site: Brunswick

For:

eurofins

Tetra Tech EM Inc. 1955 Evergreen Blvd. Bldg. 200; Suite 300 Duluth, Georgia 30096

Attn: Jessica Vickers

Jerry James

Authorized for release by: 3/26/2021 5:11:40 PM

Jerry Lanier, Project Manager I (912)250-0281

Jerry.Lanier@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Tetra Tech EM Inc. Job ID: 680-196209-1

Project/Site: Brunswick

Qualifiers

	VOA

Qualifier	Qualifier Description	
H4	Container indicated preservation, however measured pH was >2 at time of analysis.	Analysis date was more than 7 days from sampling
	date, as required for samples not preserved to pH<2.	

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*1	LCS/LCSD RPD exceeds control limits.
В	Compound was found in the blank and sample.
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1+	Surrogate recovery exceeds control limits, high biased.

Glossary

Dil Fac

DL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

Detection Limit (DoD/DOE)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

Dilution Factor

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Savannah

Page 2 of 41

4

5

6

q

10

11

19

Sample Summary

Client: Tetra Tech EM Inc. Job ID: 680-196209-1 Project/Site: Brunswick

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-196209-1	OP02-GW	GW	03/11/21 19:20	03/12/21 11:45
680-196209-2	MW11-GW	GW	03/11/21 19:55	03/12/21 11:45
680-196209-3	MW13-GW	GW	03/11/21 20:20	03/12/21 11:45
680-196209-4	MW18-GW	GW	03/11/21 20:50	03/12/21 11:45
680-196209-5	GPA09-GW	GW	03/11/21 21:30	03/12/21 11:45
880-196209-6	GPA01-GW	Water	03/11/21 21:40	03/12/21 11:45
80-196209-7	GPA11-GW	GW	03/11/21 22:00	03/12/21 11:45
880-196209-8	GPA05-GW	GW	03/11/21 22:30	03/12/21 11:45
80-196209-9	PC01-GW	GW	03/11/21 23:25	03/12/21 11:45
80-196209-10	PC02-GW	GW	03/11/21 23:55	03/12/21 11:45
80-196209-11	PC04-GW	GW	03/12/21 00:25	03/12/21 11:45
80-196209-12	PC05-GW	GW	03/12/21 01:00	03/12/21 11:45
30-196209-13	PC03-GW	Waste	03/12/21 01:15	03/12/21 11:45
80-196209-14	OP04-GW	GW	03/12/21 01:45	03/12/21 11:45
80-196209-15	OP01-GW	GW	03/12/21 02:10	03/12/21 11:45
880-196209-16	OP03-GW	GW	03/12/21 02:35	03/12/21 11:45
880-196209-17	MW01-GW	GW	03/12/21 03:10	03/12/21 11:45
880-196209-18	MW01-GW-DUP	GW	03/12/21 03:15	03/12/21 11:45
80-196209-19	Trip Blank	Water	03/11/21 00:00	03/12/21 11:45

Case Narrative

Client: Tetra Tech EM Inc.

Job ID: 680-196209-1

Project/Site: Brunswick

Job ID: 680-196209-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

Job Narrative 680-196209-1

Comments

No additional comments.

Receipt

The samples were received on 3/12/2021 11:45 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.1° C and 2.5° C.

GC/MS VOA

Method 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 680-660521.

Method 8260B: The following samples were diluted to bring the concentration of target analytes within the calibration range: OP02-GW (680-196209-1), MW11-GW (680-196209-2), MW13-GW (680-196209-3), MW18-GW (680-196209-4), GPA09-GW (680-196209-5), PC04-GW (680-196209-11) and PC05-GW (680-196209-12). Elevated reporting limits (RLs) are provided.

Method 8260B: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed outside the 7-day holding time specified for unpreserved samples but within the 14-day holding time specified for preserved samples: OP03-GW (680-196209-16).

Method 8260B: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed outside the 7-day holding time specified for unpreserved samples but within the 14-day holding time specified for preserved samples: GPA05-GW (680-196209-8).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015D: The following sample was received with a pH of >2. Analysis was performed within 7 days: GPA05-GW (680-196209-8).

Methods 8015C, 8015D: The method blank for preparation batch 680-661024 and analytical batch 680-661188 contained Diesel Range Organics [C10-C28] above the method detection limit (MDL). Associated samples were not re-analyzed because results were less than one half the reporting limit (RL).

Methods 8015C, 8015D: Diesel Range Organics [C10-C28] was detected above the reporting limit (RL) in the method blank associated with preparation batch 680-660082 and analytical batch 680-660455 as well as in the following samples: PC04-GW (680-196209-11), PC05-GW (680-196209-12), OP04-GW (680-196209-14), OP01-GW (680-196209-15), OP03-GW (680-196209-16), MW01-GW (680-196209-17) and MW01-GW-DUP (680-196209-18). All affected samples were re-extracted and/or re-analyzed outside of holding time. Both sets of data have been reported.

Methods 8015C, 8015D: The laboratory control sample (LCS) for preparation batch 680-660082 and analytical batch 680-660455 recovered outside control limits for the following analytes: Diesel Range Organics [C10-C28]. The associated sample(s) was re-prepared and/or re-analyzed outside holding time. Both sets of data have been reported.

Method 8015B: The following sample contained a petroleum product which most closely resembles # 2 fuel oil: MW11-GW (680-196209-2).

Method 8015B: The following sample contained a petroleum product which most closely resembles unleaded gasGPA01-GW (680-196209-6).

Method 8015B: The following sample contained a petroleum product which most closely resembles Gasoline/ Diesel/#2 Fuel: PC03-GW (680-196209-13).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

9

10

11

Case Narrative

Client: Tetra Tech EM Inc.

Job ID: 680-196209-1

Project/Site: Brunswick

Job ID: 680-196209-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

,

3

4

5

6

0

9

10

11

4.0

Client: Tetra Tech EM Inc.

Oil Range Organics (C20-C36)

Surrogate

o-Terphenyl

Project/Site: Brunswick

Client Sample ID: OP02-GW Lab Sample ID: 680-196209-1

Date Collected: 03/11/21 19:20 Matrix: GW

Date Received: 03/12/21 11:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	210		2.0	0.86	ug/L			03/20/21 15:19	2
Ethylbenzene	130		2.0	0.66	ug/L			03/20/21 15:19	2
Toluene	310		2.0	0.96	ug/L			03/20/21 15:19	2
Xylenes, Total	520		2.0	0.46	ug/L			03/20/21 15:19	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	87		70 - 130					03/20/21 15:19	2
1,2-Dichloroethane-d4 (Surr)	98		60 - 124					03/20/21 15:19	2
Dibromofluoromethane (Surr)	90		70 - 130					03/20/21 15:19	2
4-Bromofluorobenzene (Surr)	97		70 - 130					03/20/21 15:19	2
Method: 8015D - Gasoline Range	Organics (GR	(O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	4.9		1.0	0.50	mg/L			03/18/21 17:22	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	104		70 - 130					03/18/21 17:22	10
Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	9.5		0.39	0.088	mg/L		03/17/21 11:40	03/17/21 18:32	

Client Sample ID: MW11-GW Lab Sample ID: 680-196209-2

Limits

25 - 128

2.6

0.43 mg/L

1.4 J

%Recovery Qualifier

80

Date Collected: 03/11/21 19:55 Matrix: GW Date Received: 03/12/21 11:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	770		20	8.6	ug/L			03/20/21 15:42	20
Ethylbenzene	380		20	6.6	ug/L			03/20/21 15:42	20
Toluene	1400		20	9.6	ug/L			03/20/21 15:42	20
Xylenes, Total	1800		20	4.6	ug/L			03/20/21 15:42	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	87		70 - 130			-		03/20/21 15:42	20
1,2-Dichloroethane-d4 (Surr)	101		60 - 124					03/20/21 15:42	20
Dibramaficaramathana (Court	92		70 - 130					03/20/21 15:42	20
Dibromofluoromethane (Surr)			70 - 130					03/20/21 15:42	20

Method: 8015D - Gasoline I	Range Organics (GR	(O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	11		2.0	1.0	mg/L			03/18/21 17:44	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	95		70 - 130			_		03/18/21 17:44	20

Eurofins TestAmerica, Savannah

Dil Fac

03/17/21 18:32

Analyzed

03/17/21 11:40 03/17/21 18:32

03/17/21 11:40

Prepared

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Lab Sample ID: 680-196209-2

Matrix: GW

Job ID: 680-196209-1

Client Sample ID: MW11-GW Date Collected: 03/11/21 19:55

Date Received: 03/12/21 11:45

Method: 8015B - Hydrocarbon P	roduct Identific	cation (GC)							
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Qualitative Method	NC				ug/mL		03/17/21 21:01	03/18/21 15:22	1
- Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	12		0.30	0.067	mg/L		03/17/21 11:40	03/17/21 18:47	1
Oil Range Organics (C20-C36)	1.4	J	2.0	0.33	mg/L		03/17/21 11:40	03/17/21 18:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		25 - 128				03/17/21 11:40	03/17/21 18:47	1

Client Sample ID: MW13-GW

Date Collected: 03/11/21 20:20

Date Received: 03/12/21 11:45

Lab Sample	ID:	680-196209-3
		Matrix: GW

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier Dil Fac RLMDL Unit Prepared Analyzed Benzene 480 20 8.6 ug/L 03/20/21 16:05 Ethylbenzene 780 20 6.6 ug/L 03/20/21 16:05 Toluene 20 9.6 ug/L 03/20/21 16:05 26 20 03/20/21 16:05 4.6 ug/L **Xylenes, Total** 2400

Surrogate	%Recovery	Qualifier	Limits	P	repared	Analyzed	Dil Fac
Toluene-d8 (Surr)	87		70 - 130			03/20/21 16:05	20
1,2-Dichloroethane-d4 (Surr)	102		60 - 124			03/20/21 16:05	20
Dibromofluoromethane (Surr)	90		70 - 130			03/20/21 16:05	20
4-Bromofluorobenzene (Surr)	97		70 - 130			03/20/21 16:05	20

Method: 8015D - Gasoline Rang	e Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	14		2.0	1.0	mg/L			03/18/21 18:06	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	103		70 - 130			_		03/18/21 18:06	20

a,a,a-mindorotoldene	703		70 - 100					03/10/21 10:00	20
Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	12		0.34	0.078	mg/L		03/17/21 11:40	03/17/21 19:03	1
Oil Range Organics (C20-C36)	0.88	J	2.3	0.38	mg/L		03/17/21 11:40	03/17/21 19:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	75		25 - 128				03/17/21 11:40	03/17/21 19:03	1

Client Sample ID: MW18-GW Lab Sample ID: 680-196209-4 Date Collected: 03/11/21 20:50

Date Received: 03/12/21 11:45

Method: 8260B - Volatile O	rganic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	600		20	8.6	ug/L			03/20/21 16:28	20
Ethylbenzene	230		20	6.6	ug/L			03/20/21 16:28	20
Toluene	190		20	9.6	ug/L			03/20/21 16:28	20
Xylenes, Total	630		20	4.6	ug/L			03/20/21 16:28	20

Eurofins TestAmerica, Savannah

Page 7 of 41

20

20

20

20

Matrix: GW

Client: Tetra Tech EM Inc. Job ID: 680-196209-1

Project/Site: Brunswick

Client Sample ID: MW18-GW

Lab Sample ID: 680-196209-4

Date Collected: 03/11/21 20:50 Matrix: GW Date Received: 03/12/21 11:45

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	86		70 - 130					03/20/21 16:28	20
1,2-Dichloroethane-d4 (Surr)	103		60 - 124					03/20/21 16:28	20
Dibromofluoromethane (Surr)	92		70 - 130					03/20/21 16:28	20
4-Bromofluorobenzene (Surr)	98		70 - 130					03/20/21 16:28	20
- Method: 8015D - Gasoline Range	Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	5.9		2.0	1.0	mg/L			03/18/21 18:28	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	101		70 - 130					03/18/21 18:28	20
- Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte									
Diesel Range Organics [C10-C28]	3.0		0.29	0.066	mg/L		03/17/21 11:40	03/17/21 19:18	1
	3.0 <0.32		0.29 2.0		mg/L mg/L		03/17/21 11:40 03/17/21 11:40	03/17/21 19:18 03/17/21 19:18	1
Diesel Range Organics [C10-C28]		Qualifier			•				1 1 Dil Fac

Client Sample ID: GPA09-GW Lab Sample ID: 680-196209-5

Date Collected: 03/11/21 21:30 Matrix: GW Date Received: 03/12/21 11:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1200		50	22	ug/L			03/20/21 16:51	50
Ethylbenzene	1200		50	17	ug/L			03/20/21 16:51	50
Toluene	62		50	24	ug/L			03/20/21 16:51	50
Xylenes, Total	1200		50	12	ug/L			03/20/21 16:51	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	88		70 - 130					03/20/21 16:51	50
1,2-Dichloroethane-d4 (Surr)	100		60 - 124					03/20/21 16:51	50
Dibromofluoromethane (Surr)	90		70 - 130					03/20/21 16:51	50
4-Bromofluorobenzene (Surr)	99		70 - 130					03/20/21 16:51	50
Method: 8015D - Gasoline Rang	e Organics (GR	O) (GC)							
Method: 8015D - Gasoline Rang	e Organics (GR	O) (GC)							
Analyte	Result	O) (GC) Qualifier	RL	MDL 2.5		<u>D</u>	Prepared	Analyzed 03/18/21 18:50	Dil Fac
_			RL 5.0		Unit mg/L	<u>D</u>	Prepared	Analyzed 03/18/21 18:50	Dil Fac
Analyte	Result	Qualifier				<u>D</u>	Prepared Prepared		
Analyte C6-C10	Result 18	Qualifier	5.0			<u>D</u>	<u> </u>	03/18/21 18:50	50
Analyte C6-C10 Surrogate	Result 18 %Recovery 107	Qualifier Qualifier	5.0			<u>D</u>	<u> </u>	03/18/21 18:50 Analyzed	50 Dil Fac
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene	Result 18 %Recovery 107 Organics (DRO)	Qualifier Qualifier	5.0		mg/L	<u>D</u>	<u> </u>	03/18/21 18:50 Analyzed	50 Dil Fac
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene Method: 8015D - Diesel Range C	Result 18 %Recovery 107 Organics (DRO)	Qualifier Qualifier (GC)	5.0 Limits 70 - 130	2.5	mg/L Unit		Prepared	03/18/21 18:50 Analyzed 03/18/21 18:50	Dil Fac
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene Method: 8015D - Diesel Range C Analyte	Result 18 %Recovery 107 Organics (DRO) Result	Qualifier Qualifier (GC)	5.0 Limits 70 - 130	2.5 MDL 0.068	mg/L Unit		Prepared Prepared	03/18/21 18:50 Analyzed 03/18/21 18:50 Analyzed	Dil Fac
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene Method: 8015D - Diesel Range C Analyte Diesel Range Organics [C10-C28]	Result 18 %Recovery 107 Organics (DRO) Result 1.6	Qualifier Qualifier (GC) Qualifier	5.0 Limits 70 - 130 RL 0.30	2.5 MDL 0.068	mg/L Unit mg/L		Prepared 03/17/21 11:40	03/18/21 18:50 Analyzed 03/18/21 18:50 Analyzed 03/17/21 19:33	50 Dil Fac 50 Dil Fac

Client Sample Results

Client: Tetra Tech EM Inc. Job ID: 680-196209-1

Project/Site: Brunswick

Client Sample ID: GPA01-GW

Date Collected: 03/11/21 21:40

Date Received: 03/12/21 11:45

Lab Sample ID: 680-196209-6

Matrix: Water

Method: 8015B - Hydrocarbon Product Identification (G	C)

Analyte	Result Qua	alifier NONE	NONE Unit	D	Prepared	Analyzed	Dil Fac
Qualitative Method	NC		ug/mL		03/17/21 21:01	03/18/21 15:35	1

Client Sample ID: GPA11-GW

Date Collected: 03/11/21 22:00 Date Received: 03/12/21 11:45 Lab Sample ID: 680-196209-7

Matrix: GW

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	7.8		1.0	0.43	ug/L			03/20/21 11:05	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			03/20/21 11:05	1
Toluene	<0.48		1.0	0.48	ug/L			03/20/21 11:05	1
Xylenes, Total	0.41	J	1.0	0.23	ug/L			03/20/21 11:05	1

Surrogate	%Recovery Qua	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90	70 - 130		03/20/21 11:05	1
1,2-Dichloroethane-d4 (Surr)	96	60 - 124		03/20/21 11:05	1
Dibromofluoromethane (Surr)	89	70 - 130		03/20/21 11:05	1
4-Bromofluorobenzene (Surr)	99	70 - 130		03/20/21 11:05	1

Method: 8015D - Gasoline Range Orga	anics (GRO) (GC)

Analyte	Result Qualifier	KL	MDL Unit	D Prepared	Analyzed	DII Fac
C6-C10	<0.050	0.10	0.050 mg/L		03/18/21 16:16	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	98	70 - 130		03/18/21 16:16	1

Method: 8015D - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	0.18	J	0.31	0.069	mg/L		03/17/21 11:40	03/17/21 19:49	1
Oil Range Organics (C20-C36)	<0.34		2.0	0.34	mg/L		03/17/21 11:40	03/17/21 19:49	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	71		25 - 128	03/17/21 11:40	03/17/21 19:49	1

Client Sample ID: GPA05-GW

Date Collected: 03/11/21 22:30 Date Received: 03/12/21 11:45

Lab Sample ID: 680-196209-8

Matrix: GW

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa								
Analyzed Dil Fa	ac							
03/20/21 16:59 20	00							
03/20/21 16:59 20	00							
03/20/21 16:59 20	00							
03/20/21 16:59 20	00							
););	3/20/21 16:59 20 3/20/21 16:59 20 3/20/21 16:59 20							

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	87		70 - 130	_		03/20/21 16:59	200
1,2-Dichloroethane-d4 (Surr)	108		60 - 124			03/20/21 16:59	200
Dibromofluoromethane (Surr)	109		70 - 130			03/20/21 16:59	200
4-Bromofluorobenzene (Surr)	108		70 - 130			03/20/21 16:59	200

Eurofins TestAmerica, Savannah

Page 9 of 41

S

3

4

5

7

8

10

11

12

Client: Tetra Tech EM Inc. Job ID: 680-196209-1

Project/Site: Brunswick

Client Sample ID: GPA05-GW

Lab Sample ID: 680-196209-8

Matrix: GW

Date Collected: 03/11/21 22:30 Date Received: 03/12/21 11:45

Method: 8015D - Gasoline Range									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	46		10	5.0	mg/L			03/18/21 19:12	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	104		70 - 130					03/18/21 19:12	100
Method: 8015D - Diesel Range O	• ,	. ,							
Method: 8015D - Diesel Range O Analyte	• ,	(GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
•	• ,	. ,	RL 0.37			<u>D</u>	Prepared 03/17/21 11:40	Analyzed 03/17/21 20:04	Dil Fac
Analyte	Result	. ,		0.083	mg/L	<u>D</u>	<u>·</u>		Dil Fac
Analyte Diesel Range Organics [C10-C28]	Result 5.0	Qualifier	0.37	0.083	mg/L	<u>D</u>	03/17/21 11:40	03/17/21 20:04	Dil Fac

Client Sample ID: PC01-GW

Lab Sample ID: 680-196209-9

Matrix: GW

Date Collected: 03/11/21 23:25 Date Received: 03/12/21 11:45

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.43		1.0	0.43	ug/L			03/20/21 11:28	1
Ethylbenzene	0.59	J	1.0	0.33	ug/L			03/20/21 11:28	1
Toluene	<0.48		1.0	0.48	ug/L			03/20/21 11:28	1
Xylenes, Total	2.3		1.0	0.23	ug/L			03/20/21 11:28	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91	70 - 130		03/20/21 11:28	1
1,2-Dichloroethane-d4 (Surr)	96	60 - 124		03/20/21 11:28	1
Dibromofluoromethane (Surr)	88	70 - 130		03/20/21 11:28	1
4-Bromofluorobenzene (Surr)	99	70 - 130		03/20/21 11:28	1

Method: 8015D - Gasoline Range O	rganics (GRO) (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<0.050	0.10	0.050	mg/L			03/15/21 21:34	1

Surrogate	%Recovery	Qualifier	Limits	Pro	epared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	94		70 - 130			03/15/21 21:34	1

Method: 8015D - Diesel Range Organics (DRO) (GC)	

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di	Diesel Range Organics [C10-C28]	0.26	J	0.34	0.078	mg/L		03/17/21 11:40	03/17/21 20:19	1
Oi	Oil Range Organics (C20-C36)	<0.38		2.3	0.38	mg/L		03/17/21 11:40	03/17/21 20:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	76		25 - 128	03/17/21 11:40	03/17/21 20:19	1

Client Sample ID: PC02-GW

Date Collected: 03/11/21 23:55

Lab Sample ID: 680-196209-10 Matrix: GW

Date Received: 03/12/21 11:45

Method: 8260B - Volatile Organic Compounds (GC/MS)
Analysis Desuit Ovelifier

mothodi ozooz volutilo organio o	ompounds (ooms)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.43	1.0	0.43 ug/L			03/20/21 11:52	1

Eurofins TestAmerica, Savannah

Job ID: 680-196209-1 Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: PC02-GW

Lab Sample ID: 680-196209-10

Matrix: GW

Date Collected: 03/11/21 23:55 Date Received: 03/12/21 11:45

Analyte

Surrogate

o-Terphenyl

a,a,a-Trifluorotoluene

Diesel Range Organics [C10-C28]

Method: 8015D - Diesel Range Organics (DRO) (GC)

Diesel Range Organics [C10-C28]

Date Collected: 03/12/21 00:25

Oil Range Organics (C20-C36)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<0.33		1.0	0.33	ug/L			03/20/21 11:52	1
Toluene	<0.48		1.0	0.48	ug/L			03/20/21 11:52	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			03/20/21 11:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90		70 - 130			-		03/20/21 11:52	1
1,2-Dichloroethane-d4 (Surr)	95		60 - 124					03/20/21 11:52	1
Dibromofluoromethane (Surr)	88		70 - 130					03/20/21 11:52	1
4-Bromofluorobenzene (Surr)	98		70 - 130					03/20/21 11:52	1
Method: 8015D - Gasoline Rar	nge Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<0.050		0.10	0.050	mg/L			03/15/21 21:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	93		70 - 130			-		03/15/21 21:56	1

RL

2.5

Limits

25 - 128

0.38

MDL Unit

0.085

mg/L

0.41 mg/L

Client Sample ID: PC04-GW

%Recovery

Result Qualifier

Qualifier

0.34

<0.41

76

120

Result Qualifier

1.3 B *+ *1

Lab Sample ID: 680-196209-11

Analyzed

03/17/21 20:35

03/17/21 20:35

Analyzed

03/17/21 20:35

Prepared

03/17/21 11:40

03/17/21 11:40

Prepared

03/17/21 11:40

Prepared

03/18/21 07:58

Matrix: GW

Date Received: 03/12/21 11:45 Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed 10 03/20/21 18:01 Benzene 270 4.3 ug/L 10 Ethylbenzene 120 10 3.3 ug/L 03/20/21 18:01 10 10 03/20/21 18:01 **Toluene** 180 ug/L 10 **Xylenes, Total** 530 10 2.3 ug/L 03/20/21 18:01 10 Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 86 70 - 130 03/20/21 18:01 Toluene-d8 (Surr) 10 103 03/20/21 18:01 1,2-Dichloroethane-d4 (Surr) 60 - 124 10 Dibromofluoromethane (Surr) 88 70 - 130 03/20/21 18:01 10 4-Bromofluorobenzene (Surr) 100 70 - 130 03/20/21 18:01 10 Method: 8015D - Gasoline Range Organics (GRO) (GC) Dil Fac Analyte Result Qualifier RL MDL Unit Prepared Analyzed 1.0 0.50 mg/L 03/19/21 20:33 C6-C10 5.1 10 %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed

Eurofins TestAmerica, Savannah

03/19/21 20:33

Analyzed

03/20/21 01:58

RL

0.36

MDL Unit

0.081

mg/L

70 - 130

Dil Fac

Dil Fac

10

Dil Fac

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: PC04-GW

Date Collected: 03/12/21 00:25 Date Received: 03/12/21 11:45

Lab Sample ID: 680-196209-11

Matrix: GW

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Oil Range Organics (C20-C36) <0.39 2.4 0.39 mg/L 03/18/21 07:58 03/20/21 01:58

Surrogate Qualifier Dil Fac %Recovery Limits Prepared Analyzed 03/18/21 07:58 o-Terphenyl 25 - 128 03/20/21 01:58 84

Method: 8015D - Diesel Range Organics (DRO) (GC) - RE

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Diesel Range Organics [C10-C28] 1.3 ΗВ 0.35 0.080 mg/L 03/24/21 08:07 03/24/21 23:22 Oil Range Organics (C20-C36) <0.39 H 03/24/21 08:07 03/24/21 23:22 2.3 0.39 mg/L

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 89 25 - 128 03/24/21 08:07 03/24/21 23:22

Client Sample ID: PC05-GW Lab Sample ID: 680-196209-12

Date Received: 03/12/21 11:45

Date Collected: 03/12/21 01:00 Matrix: GW

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result

RL MDL Dil Fac Unit D Prepared Analyzed 1300 50 22 ug/L 03/20/21 17:14 50 **Benzene** Ethylbenzene 50 17 ug/L 03/20/21 17:14 50 760 50 ug/L 03/20/21 17:14 50 **Toluene** 460 24 **Xylenes, Total** 1400 50 12 ug/L 03/20/21 17:14 50

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 101 70 - 130 03/20/21 17:14 Toluene-d8 (Surr) 50 1,2-Dichloroethane-d4 (Surr) 120 60 - 124 03/20/21 17:14 50 Dibromofluoromethane (Surr) 108 70 - 130 03/20/21 17:14 50 4-Bromofluorobenzene (Surr) 116 70 - 130 03/20/21 17:14 50

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac C6-C10 9.9 2.0 1.0 mg/L 03/18/21 19:56 20

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac a,a,a-Trifluorotoluene 104 70 - 130 03/18/21 19:56 20

Method: 8015D - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.30 0.068 03/18/21 07:58 03/20/21 02:13 Diesel Range Organics [C10-C28] 0.96 B *+ *1 mg/L Oil Range Organics (C20-C36) 03/18/21 07:58 03/20/21 02:13 < 0.33 2.0 0.33 mg/L

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 86 25 - 128 03/18/21 07:58 03/20/21 02:13

Method: 8015D - Diesel Range Organics (DRO) (GC) - RE

Result Qualifier MDL Unit Dil Fac Analyte RL Prepared Analyzed Diesel Range Organics [C10-C28] 0.65 н в 0.32 0.072 mg/L 03/24/21 08:07 03/24/21 23:38 Oil Range Organics (C20-C36) <0.35 03/24/21 08:07 2.1 0.35 mg/L 03/24/21 23:38

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 25 - 128 o-Terphenyl 87 03/24/21 08:07 03/24/21 23:38

Eurofins TestAmerica, Savannah

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Lab Sample ID: 680-196209-13

Lab Sample ID: 680-196209-14

Matrix: Waste

Matrix: GW

Date Collected: 03/12/21 01:15 Date Received: 03/12/21 11:45

Client Sample ID: PC03-GW

Method: 8015B - Hydrocarbon Prod	luct Identific	ation (GC)							
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Qualitative Method	NC				ug/mL		03/18/21 20:34	03/19/21 15:55	1

Client Sample ID: OP04-GW

Date Collected: 03/12/21 01:45

Date Received: 03/12/21 11:45

Method: 8260B - Volatile (Organic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.43	J	1.0	0.43	ug/L			03/20/21 12:15	1
Ethylbenzene	0.41	J	1.0	0.33	ug/L			03/20/21 12:15	1
Toluene	0.74	J	1.0	0.48	ug/L			03/20/21 12:15	1
Xylenes, Total	1.9		1.0	0.23	ug/L			03/20/21 12:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			70 - 130			_		03/20/21 12:15	

Surrogate	%Recovery	Qualifier	Limits	Prep	pared	Analyzed	Dil Fac
Toluene-d8 (Surr)	86		70 - 130			03/20/21 12:15	1
1,2-Dichloroethane-d4 (Surr)	95		60 - 124			03/20/21 12:15	1
Dibromofluoromethane (Surr)	91		70 - 130			03/20/21 12:15	1
4-Bromofluorobenzene (Surr)	100		70 - 130			03/20/21 12:15	1

Method: 8015D - Gasoline	Range Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<0.050		0.10	0.050	mg/L			03/18/21 16:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	94		70 - 130			_		03/18/21 16:38	1

Method: 8015D - Diesel Range O	rganics (DRO) (G	SC)							
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	0.68 B	3 *+ *1	0.46	0.10	mg/L		03/18/21 07:58	03/20/21 02:29	1
Oil Range Organics (C20-C36)	<0.50		3.0	0.50	mg/L		03/18/21 07:58	03/20/21 02:29	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac

o-Terphenyl	89		25 - 128				03/18/21 07:58	03/20/21 02:29	1
Method: 8015D - Diesel Range Org	janics (DRO)	(GC) - RE							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	0.51	нв	0.39	0.089	mg/L		03/24/21 08:07	03/24/21 23:53	1
Oil Range Organics (C20-C36)	< 0.43	Н	2.6	0.43	ma/L		03/24/21 08:07	03/24/21 23:53	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	94	25 - 128	03/24/21 08:07	03/24/21 23:53	1

Client Sample ID: OP01-GW

Date Collected: 03/12/21 02:10

Matrix: GW

Date Received: 03/12/21 11:45

Method: 8260B - Volatile O	rganic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.70	J	1.0	0.43	ug/L			03/20/21 12:38	1
Ethylbenzene	0.65	J	1.0	0.33	ug/L			03/20/21 12:38	1
Toluene	1.4		1.0	0.48	ug/L			03/20/21 12:38	1
Xylenes, Total	3.8		1.0	0.23	ug/L			03/20/21 12:38	1

Eurofins TestAmerica, Savannah

Page 13 of 41

2

<u>5</u>

5

6

10

11

12

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: OP01-GW

Lab Sample ID: 680-196209-15

Prepared

03/24/21 08:07

03/24/21 08:07

Prepared

03/24/21 08:07

Matrix: GW

Date Collected: 03/12/21 02:10 Date Received: 03/12/21 11:45

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90		70 - 130					03/20/21 12:38	1
1,2-Dichloroethane-d4 (Surr)	97		60 - 124					03/20/21 12:38	1
Dibromofluoromethane (Surr)	89		70 - 130					03/20/21 12:38	1
4-Bromofluorobenzene (Surr)	100		70 - 130					03/20/21 12:38	1
Method: 8015D - Gasoline Range	Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<0.050		0.10	0.050	mg/L			03/18/21 17:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	96		70 - 130					03/18/21 17:00	1
Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	0.23	J B *+ *1	0.31	0.070	mg/L		03/18/21 07:58	03/20/21 02:44	1
Oil Range Organics (C20-C36)	<0.34		2.1	0.34	mg/L		03/18/21 07:58	03/20/21 02:44	1
	0/ 8	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	Quanner						, y = 0 u	Diriac

Client Sample ID: OP03-GW Lab Sample ID: 680-196209-16

Limits

25 - 128

RL

0.36

2.4

MDL Unit

0.082 mg/L

0.40 mg/L

Date Collected: 03/12/21 02:35

Diesel Range Organics [C10-C28]

Oil Range Organics (C20-C36)

Analyte

Surrogate

o-Terphenyl

Method: 8015D - Diesel Range Organics (DRO) (GC) - RE

Result Qualifier

0.29 J H B

<0.40 H

%Recovery Qualifier

84

Date Received: 03/12/21 11:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	59	H4	1.0	0.43	ug/L			03/20/21 13:01	1
Ethylbenzene	4.8	H4	1.0	0.33	ug/L			03/20/21 13:01	1
Toluene	8.7	H4	1.0	0.48	ug/L			03/20/21 13:01	1
Xylenes, Total	7.0	H4	1.0	0.23	ug/L			03/20/21 13:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	89		70 - 130			=		03/20/21 13:01	1
1,2-Dichloroethane-d4 (Surr)	95		60 - 124					03/20/21 13:01	1
Dibromofluoromethane (Surr)	84		70 - 130					03/20/21 13:01	1
4-Bromofluorobenzene (Surr)	100		70 - 130					03/20/21 13:01	1
Method: 8015D - Gasoline Rar	nge Organics (GR	(O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	0.54		0.10	0.050	mg/L			03/19/21 19:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene			70 - 130			_		03/19/21 19:27	1

Dil Fac

Analyzed

03/25/21 00:08

03/25/21 00:08

Analyzed

03/25/21 00:08

Matrix: GW

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: OP03-GW

Lab Sample ID: 680-196209-16

Matrix: GW

Date Collected: 03/12/21 02:35 Date Received: 03/12/21 11:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	0.97	B *+ *1	0.31	0.069	mg/L		03/18/21 07:58	03/20/21 02:59	1
Oil Range Organics (C20-C36)	0.35	J	2.0	0.34	mg/L		03/18/21 07:58	03/20/21 02:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
								00/00/04 00 50	
• ' '	67 Organics (DRO)	(GC) - RE	25 - 128				03/18/21 07:58	03/20/21 02:59	1
o-Terphenyl Method: 8015D - Diesel Range O Analyte	rganics (DRO)	(GC) - RE Qualifier	25 ₋ 128 R L	MDL	Unit	D	03/18/21 07:58 Prepared	03/20/21 02:59 Analyzed	1 Dil Fac
Method: 8015D - Diesel Range C Analyte	erganics (DRO)			MDL 0.068		<u>D</u>			Dil Fac
Method: 8015D - Diesel Range C	erganics (DRO)	Qualifier	RL		mg/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015D - Diesel Range C Analyte Diesel Range Organics [C10-C28]	Prganics (DRO) Result 1.2	Qualifier HB JH	RL 0.30	0.068	mg/L	<u>D</u>	Prepared 03/24/21 08:07	Analyzed 03/25/21 00:24	Dil Fac

Client Sample ID: MW01-GW Lab Sample ID: 680-196209-17

Date Collected: 03/12/21 03:10 Matrix: GW

Date Received: 03/12/21 11:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	5400		200	86	ug/L			03/20/21 15:23	200
Ethylbenzene	1000		200	66	ug/L			03/20/21 15:23	200
Toluene	700		200	96	ug/L			03/20/21 15:23	200
Xylenes, Total	3900		200	46	ug/L			03/20/21 15:23	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	85		70 - 130				-	03/20/21 15:23	200
1,2-Dichloroethane-d4 (Surr)	107		60 - 124					03/20/21 15:23	200
Dibromofluoromethane (Surr)	109		70 - 130					03/20/21 15:23	200
4-Bromofluorobenzene (Surr)	105		70 - 130					03/20/21 15:23	200
Method: 8015D - Gasoline Range	Organics (GR	(O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	37		10	5.0	mg/L			03/19/21 19:49	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	105		70 - 130					03/19/21 19:49	100
Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	7.6	B *+ *1	0.34	0.077	mg/L		03/18/21 07:58	03/20/21 03:14	1
Oil Range Organics (C20-C36)	1.6	J	2.3	0.37	mg/L		03/18/21 07:58	03/20/21 03:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		25 - 128				03/18/21 07:58	03/20/21 03:14	1
Method: 8015D - Diesel Range O	rganics (DRO)	(GC) - RE							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	5.7	НВ	0.32	0.073	mg/L		03/24/21 08:07	03/25/21 00:39	1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: MW01-GW Date Collected: 03/12/21 03:10

Lab Sample ID: 680-196209-17

Matrix: GW

Job ID: 680-196209-1

Date Received: 03/12/21 11:45

Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	80		25 - 128	03/24/21 00.01 0	03/25/21 00:39	1

Client Sample ID: MW01-GW-DUP Lab Sample ID: 680-196209-18

Date Collected: 03/12/21 03:15 Matrix: GW

Date Received: 03/12/21 11:45

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	5200		200	86	ug/L			03/20/21 15:47	200
Ethylbenzene	1000		200	66	ug/L			03/20/21 15:47	200
Toluene	710		200	96	ug/L			03/20/21 15:47	200
Xylenes, Total	3800		200	46	ug/L			03/20/21 15:47	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	83		70 - 130			-		03/20/21 15:47	200
1,2-Dichloroethane-d4 (Surr)	106		60 - 124					03/20/21 15:47	200
Dibromofluoromethane (Surr)	109		70 - 130					03/20/21 15:47	200
4-Bromofluorobenzene (Surr)	111		70 - 130					03/20/21 15:47	200

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	38		10	5.0	mg/L			03/19/21 20:11	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzea	DII Fac
a,a,a-Trifluorotoluene	104		70 - 130		03/19/21 20:11	100

Method: 8015D - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.39 0.088 mg/L 03/18/21 07:58 03/20/21 03:30 Diesel Range Organics [C10-C28] 6.8 B *+ *1 03/20/21 03:30 Oil Range Organics (C20-C36) 2.6 0.43 mg/L 03/18/21 07:58 1.6 J

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 25 - 128 03/18/21 07:58 03/20/21 03:30 o-Terphenyl 85

Method: 8015D - Diesel Range Organics (DRO) (GC) - RE

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	6.4	нв	0.30	0.068	mg/L		03/24/21 08:07	03/25/21 00:54	1
Oil Range Organics (C20-C36)	1.3	JH	2.0	0.33	mg/L		03/24/21 08:07	03/25/21 00:54	1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 95 03/24/21 08:07 o-Terphenyl 25 - 128 03/25/21 00:54

Client Sample ID: Trip Blank Lab Sample ID: 680-196209-19 Date Collected: 03/11/21 00:00 **Matrix: Water**

Date Received: 03/12/21 11:45

Method: 8260E	B - Volatile Organic Compounds ((GC/MS)						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.43	1.0	0.43	ug/L			03/20/21 10:42	1
Ethylbenzene	<0.33	1.0	0.33	ug/L			03/20/21 10:42	1
Toluene	<0.48	1.0	0.48	ug/L			03/20/21 10:42	1
Xylenes, Total	<0.23	1.0	0.23	ug/L			03/20/21 10:42	1

Eurofins TestAmerica, Savannah

Client Sample Results

Client: Tetra Tech EM Inc. Job ID: 680-196209-1

Project/Site: Brunswick

Surrogate

a,a,a-Trifluorotoluene

Client Sample ID: Trip Blank

Lab Sample ID: 680-196209-19

Analyzed

03/15/21 20:07

Prepared

Matrix: Water

Date Collected: 03/11/21 00:00 Date Received: 03/12/21 11:45

Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	89	70 - 130				03/20/21 10:42	1
1,2-Dichloroethane-d4 (Surr)	97	60 - 124				03/20/21 10:42	1
Dibromofluoromethane (Surr)	89	70 - 130				03/20/21 10:42	1
4-Bromofluorobenzene (Surr)	99	70 - 130				03/20/21 10:42	1
- Method: 8015D - Gasoline Rar	nge Organics (GRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<0.050	0.10	0.050 mg/L			03/15/21 20:07	1

Limits

70 - 130

%Recovery Qualifier

95

5

0

8

9

Dil Fac

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Job ID: 680-196209-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-660521/9

Matrix: Water

Analysis Batch: 660521

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.43		1.0	0.43	ug/L			03/20/21 10:10	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			03/20/21 10:10	1
Toluene	<0.48		1.0	0.48	ug/L			03/20/21 10:10	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			03/20/21 10:10	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 89 70 - 130 03/20/21 10:10 94 60 - 124 1,2-Dichloroethane-d4 (Surr) 03/20/21 10:10 Dibromofluoromethane (Surr) 86 70 - 130 03/20/21 10:10 4-Bromofluorobenzene (Surr) 99 70 - 130 03/20/21 10:10

Lab Sample ID: LCS 680-660521/4

Matrix: Water

Analyte Benzene Ethylbenzene Toluene Xylenes, Total

Analysis Batch: 660521

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spi	ke	LCS	LCS				%Rec.
Add	ed	Result	Qualifier	Unit	D	%Rec	Limits
50	0.0	48.9		ug/L		98	70 - 130
50	0.0	45.6		ug/L		91	70 - 130
50	0.0	45.1		ug/L		90	70 - 130
1(00	93.6		ug/L		94	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	90		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		60 - 124
Dibromofluoromethane (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

Lab Sample ID: LCSD 680-660521/5

Matrix: Water

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analysis Batch: 660521

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit %Rec Limits RPD Limit 50.0 49.6 ug/L 99 70 - 130 30 50.0 47.9 96 70 - 130 20 ug/L 5 50.0 45.7 ug/L 91 70 - 130 30 100 96.9 70 - 130 ug/L 30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	92		70 - 130
1,2-Dichloroethane-d4 (Surr)	100		60 - 124
Dibromofluoromethane (Surr)	91		70 - 130
4-Bromofluorobenzene (Surr)	103		70 - 130

Eurofins TestAmerica, Savannah

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-660527/9

Matrix: Water

Analysis Batch: 660527

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Benzene < 0.43 1.0 0.43 ug/L 03/20/21 10:17 Ethylbenzene < 0.33 1.0 0.33 ug/L 03/20/21 10:17 Toluene <0.48 03/20/21 10:17 1.0 0.48 ug/L 03/20/21 10:17 Xylenes, Total <0.23 1.0 0.23 ug/L

MB MB

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	81	70 - 130		03/20/21 10:17	1
1,2-Dichloroethane-d4 (Surr)	103	60 - 124		03/20/21 10:17	1
Dibromofluoromethane (Surr)	108	70 - 130		03/20/21 10:17	1
4-Bromofluorobenzene (Surr)	111	70 - 130		03/20/21 10:17	1

Lab Sample ID: LCS 680-660527/4

Matrix: Water

Analysis Batch: 660527

Client Sample ID: Lab Control Sample

Prep Type: Total/NA %Rec.

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 50.0 49.9 ug/L 100 70 - 130 Ethylbenzene 50.0 48.6 ug/L 97 70 - 130 Toluene 50.0 43.2 ug/L 86 70 - 130 70 - 130 100 102 Xylenes, Total ug/L 102

Spike

Added

50.0

50.0

50.0

100

Limits

LCSD LCSD

50.9

50.6

42.3

105

Result Qualifier

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	87		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		60 - 124
Dibromofluoromethane (Surr)	106		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130

Lab Sample ID: LCSD 680-660527/5

Matrix: Water

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analysis Batch: 660527

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec. RPD Unit %Rec Limits RPD Limit D ug/L 102 70 - 130 30 101 70 - 130 20 ug/L ug/L 85 70 - 130 30

70 - 130

105

LCSD LCSD Surrogate %Recovery Qualifier

Toluene-d8 (Surr) 86 70 - 130 1,2-Dichloroethane-d4 (Surr) 103 60 - 124 Dibromofluoromethane (Surr) 108 70 - 130 70 - 130 4-Bromofluorobenzene (Surr) 96

Eurofins TestAmerica, Savannah

Client: Tetra Tech EM Inc.

Job ID: 680-196209-1

Project/Site: Brunswick

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 659651

Matrix: Water

Lab Sample ID: MB 680-659651/6

мв мв Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac C6-C10 < 0.050 0.10 0.050 mg/L 03/15/21 17:33

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac a,a,a-Trifluorotoluene 95 70 - 130 03/15/21 17:33

Lab Sample ID: LCS 680-659651/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 659651

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits C6-C10 0.500 0.463 93 70 - 148 mg/L

70 - 130

LCS LCS Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene

103

Lab Sample ID: LCSD 680-659651/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 659651

LCSD LCSD RPD Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits **RPD** Limit C6-C10 0.500 0.460 92 70 - 148 50 mg/L

LCSD LCSD

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene 102 70 - 130

Matrix: Water

Lab Sample ID: MB 680-660201/6

Analysis Batch: 660201

мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed C6-C10 <0.050 0.10 03/18/21 14:27 0.050 mg/L

MB MB

%Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac a,a,a-Trifluorotoluene 97 70 - 130 03/18/21 14:27

Lab Sample ID: LCS 680-660201/4

Matrix: Water

Analysis Batch: 660201

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits C6-C10 0.500 0.458 mg/L 92 70 - 148

LCS LCS

%Recovery Surrogate Qualifier Limits a,a,a-Trifluorotoluene 105 70 - 130

Eurofins TestAmerica, Savannah

Dil Fac

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client: Tetra Tech EM Inc.

Job ID: 680-196209-1

Project/Site: Brunswick

Method: 8015D - Gasoline Range Organics (GRO) (GC) (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 660201

Matrix: Water

Lab Sample ID: LCSD 680-660201/5

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier %Rec Limits RPD Limit Unit C6-C10 0.500 0.465 mg/L 93 70 - 148 2 50

LCSD LCSD

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene 105 70 - 130

Lab Sample ID: MB 680-660411/21 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 660411

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac C6-C10 <0.050 0.10 0.050 mg/L 03/19/21 19:05

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac a,a,a-Trifluorotoluene 97 70 - 130 03/19/21 19:05

Lab Sample ID: LCS 680-660411/19 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 660411

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits C6-C10 0.500 0.499 100 70 - 148 mg/L

LCS LCS

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene 106 70 - 130

Lab Sample ID: LCSD 680-660411/20 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 660411

LCSD LCSD Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit C6-C10 0.500 0.510 102 70 - 148

LCSD LCSD

%Recovery Qualifier Surrogate Limits a,a,a-Trifluorotoluene 108 70 - 130

Method: 8015B - Hydrocarbon Product Identification (GC)

Lab Sample ID: MB 460-765437/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 765631

MB MB Result Qualifier NONE NONE Unit Dil Fac Analyte Prepared Analyzed 03/17/21 21:01 Qualitative Method NC ug/mL 03/18/21 15:09

RPD

3/26/2021

Prep Batch: 765437

Prep Batch: 765713

Prep Batch: 659965

Prep Batch: 659965

Prep Type: Total/NA

Prep Type: Total/NA **Prep Batch: 659965**

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Method: 8015B - Hydrocarbon Product Identification (GC) (Continued)

Lab Sample ID: MB 460-765713/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Waste Analysis Batch: 765834

мв мв NONE Analyte Result Qualifier NONE Unit Prepared Analyzed Dil Fac Qualitative Method 0.000 ug/mL 03/18/21 20:34 03/19/21 15:17

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 680-659965/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 659987

	MR MR						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	<0.068	0.30	0.068 mg/L		03/17/21 11:40	03/17/21 17:15	1
Oil Range Organics (C20-C36)	<0.33	2.0	0.33 mg/L		03/17/21 11:40	03/17/21 17:15	1

мв мв

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 25 - 128 03/17/21 11:40 03/17/21 17:15 o-Terphenyl 78

Lab Sample ID: LCS 680-659965/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 659987

Matrix: Water

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits 4.00 2.71 68 21 - 130 Diesel Range Organics mg/L

[C10-C28] LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 82 25 - 128

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 680-659965/4-A

Analysis Batch: 659987 **Prep Batch: 659965** LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Oil Range Organics (C20-C36) 8.00 5.39 67 32 - 130 mg/L

LCS LCS %Recovery Qualifier Surrogate Limits

o-Terphenyl 92 25 - 128

Lab Sample ID: LCSD 680-659965/3-A **Matrix: Water**

Analysis Batch: 659987

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec I imits RPD Limit **Diesel Range Organics** 4.00 2.29 mg/L 57 21 - 130 50

[C10-C28]

LCSD LCSD

Surrogate %Recovery Qualifier Limits 25 - 128 o-Terphenyl 69

Eurofins TestAmerica, Savannah

3/26/2021

Client Sample ID: Lab Control Sample Dup

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 680-659965/5-A Matrix: Water Analysis Batch: 659987				Clie	nt San	nple ID:	•	ol Sampl Type: To Batch: 6	tal/NA
Analysis Batom soccor	Spike	LCSD	LCSD				%Rec.	Butom 0	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Oil Range Organics (C20-C36)	8.00	5.35		mg/L		67	32 - 130	1	50
1000 1000									

LCSD LCSD Surrogate %Recovery Qualifier Limits 25 - 128 o-Terphenyl 89

Lab Sample ID: MB 680-660082/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 660455

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	0.168	J	0.30	0.068	mg/L		03/18/21 07:58	03/19/21 23:41	1
Oil Range Organics (C20-C36)	<0.33		2.0	0.33	mg/L		03/18/21 07:58	03/19/21 23:41	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 25 - 128 03/18/21 07:58 03/19/21 23:41 o-Terphenyl 74

Lab Sample ID: LCS 680-660082/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 660455

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics	4.00	12.4	*+	mg/L		310	21 - 130	

[C10-C28]

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	250	S1+	25 - 128

Lab Sample ID: LCS 680-660082/4-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 660455

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Oil Range Organics (C20-C36)	8.00	5.88		mg/L	_	73	32 - 130	

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
o-Terphenyl	90	25 - 128

Lab Sample ID: LCSD 680-660082/3-A

Matrix: Water

Analysis	Batch: 660455
-----------------	---------------

						Prep	Batch: 6	60082
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4.00	2.62	*1	mg/L		65	21 - 130	130	50
	Added	Added Result	Added Result Qualifier	Added Result Qualifier Unit	Added Result Qualifier Unit D	Added Result Qualifier Unit D %Rec	Spike LCSD LCSD %Rec. Added Result Qualifier Unit D %Rec Limits	Added Result Qualifier Unit D %Rec Limits RPD

[C10-C28]

Surrogate	%Recovery Qualifier	Limits
o-Terphenyl	78	25 - 128

Eurofins TestAmerica, Savannah

3/26/2021

Page 23 of 41

Prep Batch: 660082

Prep Batch: 660082

Prep Type: Total/NA

Prep Batch: 660082

Prep Batch: 661024

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 680-660082/5-A Matrix: Water				Clie	ent Sam	ple ID:	Lab Contro Prep 1	l Sampl vpe: To	•
Analysis Batch: 660455								Batch: 6	
,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Oil Range Organics (C20-C36)	8.00	6.22		mg/L		78	32 - 130	6	50
LCSD LCSD									

Surrogate %Recovery Qualifier Limits 25 - 128 o-Terphenyl 89

Lab Sample ID: MB 680-661024/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 661188

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	0.113	J	0.30	0.068	mg/L		03/24/21 08:07	03/24/21 20:18	1
Oil Range Organics (C20-C36)	<0.33		2.0	0.33	mg/L		03/24/21 08:07	03/24/21 20:18	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 25 - 128 o-Terphenyl 7.3 03/24/21 08:07 03/24/21 20:18

Lab Sample ID: LCS 680-661024/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 661188

[C10-C28]

Spike LCS LCS babbA Limits Analyte Result Qualifier Unit %Rec Diesel Range Organics 4.00 2.56 mg/L 64 21 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 74 25 - 128

Lab Sample ID: LCS 680-661024/3-A Client Sample ID: Lab Control Sample

Matrix: Water Analysis Batch: 661188

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit D %Rec Oil Range Organics (C20-C36) 8.00 5.96 mg/L 32 - 130

LCS LCS Surrogate %Recovery Qualifier Limits 96 25 - 128 o-Terphenyl

Lab Sample ID: LCSD 680-661024/4-A

Matrix: Water

Analysis Batch: 661188

Spike LCSD LCSD %Rec. Added Result Qualifier Unit D %Rec Limits RPD Analyte Oil Range Organics (C20-C36) 8.00 6.47 mg/L 81 32 _ 130

LCSD LCSD Surrogate %Recovery Qualifier Limits 97 25 _ 128 o-Terphenyl

Eurofins TestAmerica, Savannah

Prep Batch: 661024

Prep Type: Total/NA

Prep Batch: 661024

Prep Batch: 661024

RPD

Client: Tetra Tech EM Inc.

Job ID: 680-196209-1

Project/Site: Brunswick

GC/MS VOA

Analysis Batch: 660521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-196209-1	OP02-GW	Total/NA	GW	8260B	
680-196209-2	MW11-GW	Total/NA	GW	8260B	
680-196209-3	MW13-GW	Total/NA	GW	8260B	
680-196209-4	MW18-GW	Total/NA	GW	8260B	
680-196209-5	GPA09-GW	Total/NA	GW	8260B	
680-196209-7	GPA11-GW	Total/NA	GW	8260B	
680-196209-9	PC01-GW	Total/NA	GW	8260B	
680-196209-10	PC02-GW	Total/NA	GW	8260B	
680-196209-11	PC04-GW	Total/NA	GW	8260B	
680-196209-12	PC05-GW	Total/NA	GW	8260B	
680-196209-14	OP04-GW	Total/NA	GW	8260B	
680-196209-15	OP01-GW	Total/NA	GW	8260B	
680-196209-16	OP03-GW	Total/NA	GW	8260B	
680-196209-19	Trip Blank	Total/NA	Water	8260B	
MB 680-660521/9	Method Blank	Total/NA	Water	8260B	
LCS 680-660521/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-660521/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 660527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-196209-8	GPA05-GW	Total/NA	GW	8260B	
680-196209-17	MW01-GW	Total/NA	GW	8260B	
680-196209-18	MW01-GW-DUP	Total/NA	GW	8260B	
MB 680-660527/9	Method Blank	Total/NA	Water	8260B	
LCS 680-660527/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-660527/5	Lab Control Sample Dup	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 659651

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-196209-9	PC01-GW	Total/NA	GW	8015D	
680-196209-10	PC02-GW	Total/NA	GW	8015D	
680-196209-19	Trip Blank	Total/NA	Water	8015D	
MB 680-659651/6	Method Blank	Total/NA	Water	8015D	
LCS 680-659651/4	Lab Control Sample	Total/NA	Water	8015D	
LCSD 680-659651/5	Lab Control Sample Dup	Total/NA	Water	8015D	

Analysis Batch: 660201

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-1	OP02-GW	Total/NA	GW	8015D	
680-196209-2	MW11-GW	Total/NA	GW	8015D	
680-196209-3	MW13-GW	Total/NA	GW	8015D	
680-196209-4	MW18-GW	Total/NA	GW	8015D	
680-196209-5	GPA09-GW	Total/NA	GW	8015D	
680-196209-7	GPA11-GW	Total/NA	GW	8015D	
680-196209-8	GPA05-GW	Total/NA	GW	8015D	
680-196209-12	PC05-GW	Total/NA	GW	8015D	
680-196209-14	OP04-GW	Total/NA	GW	8015D	
680-196209-15	OP01-GW	Total/NA	GW	8015D	
MB 680-660201/6	Method Blank	Total/NA	Water	8015D	

Eurofins TestAmerica, Savannah

Page 25 of 41 3/26/2021

_

3

4

0

9

10

11

QC Association Summary

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Job ID: 680-196209-1

GC VOA (Continued)

Analysis Batch: 660201 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-660201/4	Lab Control Sample	Total/NA	Water	8015D	
LCSD 680-660201/5	Lab Control Sample Dup	Total/NA	Water	8015D	

Analysis Batch: 660411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-11	PC04-GW	Total/NA	GW	8015D	
680-196209-16	OP03-GW	Total/NA	GW	8015D	
680-196209-17	MW01-GW	Total/NA	GW	8015D	
680-196209-18	MW01-GW-DUP	Total/NA	GW	8015D	
MB 680-660411/21	Method Blank	Total/NA	Water	8015D	
LCS 680-660411/19	Lab Control Sample	Total/NA	Water	8015D	
LCSD 680-660411/20	Lab Control Sample Dup	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 659965

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-1	OP02-GW	Total/NA	GW	3510C	
680-196209-2	MW11-GW	Total/NA	GW	3510C	
680-196209-3	MW13-GW	Total/NA	GW	3510C	
680-196209-4	MW18-GW	Total/NA	GW	3510C	
680-196209-5	GPA09-GW	Total/NA	GW	3510C	
680-196209-7	GPA11-GW	Total/NA	GW	3510C	
680-196209-8	GPA05-GW	Total/NA	GW	3510C	
680-196209-9	PC01-GW	Total/NA	GW	3510C	
680-196209-10	PC02-GW	Total/NA	GW	3510C	
MB 680-659965/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-659965/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCS 680-659965/4-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 680-659965/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 680-659965/5-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 659987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-1	OP02-GW	Total/NA	GW	8015D	659965
680-196209-2	MW11-GW	Total/NA	GW	8015D	659965
680-196209-3	MW13-GW	Total/NA	GW	8015D	659965
680-196209-4	MW18-GW	Total/NA	GW	8015D	659965
680-196209-5	GPA09-GW	Total/NA	GW	8015D	659965
680-196209-7	GPA11-GW	Total/NA	GW	8015D	659965
680-196209-8	GPA05-GW	Total/NA	GW	8015D	659965
680-196209-9	PC01-GW	Total/NA	GW	8015D	659965
680-196209-10	PC02-GW	Total/NA	GW	8015D	659965
MB 680-659965/1-A	Method Blank	Total/NA	Water	8015D	659965
LCS 680-659965/2-A	Lab Control Sample	Total/NA	Water	8015D	659965
LCS 680-659965/4-A	Lab Control Sample	Total/NA	Water	8015D	659965
LCSD 680-659965/3-A	Lab Control Sample Dup	Total/NA	Water	8015D	659965
LCSD 680-659965/5-A	Lab Control Sample Dup	Total/NA	Water	8015D	659965

Eurofins TestAmerica, Savannah

3

7

11

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Job ID: 680-196209-1

GC Semi VOA

Prep Batch: 660082

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-11	PC04-GW	Total/NA	GW	3510C	
680-196209-12	PC05-GW	Total/NA	GW	3510C	
680-196209-14	OP04-GW	Total/NA	GW	3510C	
680-196209-15	OP01-GW	Total/NA	GW	3510C	
680-196209-16	OP03-GW	Total/NA	GW	3510C	
680-196209-17	MW01-GW	Total/NA	GW	3510C	
680-196209-18	MW01-GW-DUP	Total/NA	GW	3510C	
MB 680-660082/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-660082/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCS 680-660082/4-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 680-660082/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 680-660082/5-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 660455

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-11	PC04-GW	Total/NA	GW	8015D	660082
680-196209-12	PC05-GW	Total/NA	GW	8015D	660082
680-196209-14	OP04-GW	Total/NA	GW	8015D	660082
680-196209-15	OP01-GW	Total/NA	GW	8015D	660082
680-196209-16	OP03-GW	Total/NA	GW	8015D	660082
680-196209-17	MW01-GW	Total/NA	GW	8015D	660082
680-196209-18	MW01-GW-DUP	Total/NA	GW	8015D	660082
MB 680-660082/1-A	Method Blank	Total/NA	Water	8015D	660082
LCS 680-660082/2-A	Lab Control Sample	Total/NA	Water	8015D	660082
LCS 680-660082/4-A	Lab Control Sample	Total/NA	Water	8015D	660082
LCSD 680-660082/3-A	Lab Control Sample Dup	Total/NA	Water	8015D	660082
LCSD 680-660082/5-A	Lab Control Sample Dup	Total/NA	Water	8015D	660082

Prep Batch: 661024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-11 - RE	PC04-GW	Total/NA	GW	3510C	
680-196209-12 - RE	PC05-GW	Total/NA	GW	3510C	
680-196209-14 - RE	OP04-GW	Total/NA	GW	3510C	
680-196209-15 - RE	OP01-GW	Total/NA	GW	3510C	
680-196209-16 - RE	OP03-GW	Total/NA	GW	3510C	
680-196209-17 - RE	MW01-GW	Total/NA	GW	3510C	
680-196209-18 - RE	MW01-GW-DUP	Total/NA	GW	3510C	
MB 680-661024/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-661024/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCS 680-661024/3-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 680-661024/4-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 661188

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-11 - RE	PC04-GW	Total/NA	GW	8015D	661024
680-196209-12 - RE	PC05-GW	Total/NA	GW	8015D	661024
680-196209-14 - RE	OP04-GW	Total/NA	GW	8015D	661024
680-196209-15 - RE	OP01-GW	Total/NA	GW	8015D	661024
680-196209-16 - RE	OP03-GW	Total/NA	GW	8015D	661024
680-196209-17 - RE	MW01-GW	Total/NA	GW	8015D	661024
680-196209-18 - RE	MW01-GW-DUP	Total/NA	GW	8015D	661024

Eurofins TestAmerica, Savannah

2

0

8

11

QC Association Summary

Client: Tetra Tech EM Inc. Job ID: 680-196209-1

Project/Site: Brunswick

GC Semi VOA (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-661024/1-A	Method Blank	Total/NA	Water	8015D	661024
LCS 680-661024/2-A	Lab Control Sample	Total/NA	Water	8015D	661024
LCS 680-661024/3-A	Lab Control Sample	Total/NA	Water	8015D	661024
LCSD 680-661024/4-A	Lab Control Sample Dup	Total/NA	Water	8015D	661024

Prep Batch: 765437

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-2	MW11-GW	Total/NA	GW	3510C	
680-196209-6	GPA01-GW	Total/NA	Water	3510C	
MB 460-765437/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 765631

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-2	MW11-GW	Total/NA	GW	8015B	765437
680-196209-6	GPA01-GW	Total/NA	Water	8015B	765437
MB 460-765437/1-A	Method Blank	Total/NA	Water	8015B	765437

Prep Batch: 765713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-13	PC03-GW	Total/NA	Waste	3580A	
MB 460-765713/1-A	Method Blank	Total/NA	Waste	3580A	

Analysis Batch: 765834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196209-13	PC03-GW	Total/NA	Waste	8015B	765713
MB 460-765713/1-A	Method Blank	Total/NA	Waste	8015B	765713

- 13

4

5

7

8

9

Job ID: 680-196209-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: OP02-GW Lab Sample ID: 680-196209-1 Date Collected: 03/11/21 19:20

Matrix: GW

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	5 mL	5 mL	660521	03/20/21 15:19	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		10	5 mL	5 mL	660201	03/18/21 17:22	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			192.1 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 18:32	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Lab Sample ID: 680-196209-2 Client Sample ID: MW11-GW

Date Collected: 03/11/21 19:55 Matrix: GW

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	5 mL	5 mL	660521	03/20/21 15:42	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		20	5 mL	5 mL	660201	03/18/21 17:44	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			50 mL	1 mL	765437	03/17/21 21:01	JMS	TAL EDI
Total/NA	Analysis	8015B		1			765631	03/18/21 15:22	CDC	TAL EDI
	Instrume	nt ID: CBNAGC2								
Total/NA	Prep	3510C			252.3 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 18:47	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: MW13-GW Lab Sample ID: 680-196209-3

Date Collected: 03/11/21 20:20

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	5 mL	5 mL	660521	03/20/21 16:05	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		20	5 mL	5 mL	660201	03/18/21 18:06	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			218.5 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 19:03	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: MW18-GW Lab Sample ID: 680-196209-4

Date Collected: 03/11/21 20:50

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	5 mL	5 mL	660521	03/20/21 16:28	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		20	5 mL	5 mL	660201	03/18/21 18:28	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								

Eurofins TestAmerica, Savannah

Page 29 of 41

Matrix: GW

Matrix: GW

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Lab Sample ID: 680-196209-4

Client Sample ID: MW18-GW Date Collected: 03/11/21 20:50

Matrix: GW

Job ID: 680-196209-1

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			256 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 19:18	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: GPA09-GW

Lab Sample ID: 680-196209-5

Date Collected: 03/11/21 21:30 Date Received: 03/12/21 11:45

Matrix: GW

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		50	5 mL	5 mL	660521	03/20/21 16:51	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		50	5 mL	5 mL	660201	03/18/21 18:50	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			251.8 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 19:33	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Lab Sample ID: 680-196209-6

Matrix: Water

Matrix: GW

Date Collected: 03/11/21 21:40

Client Sample ID: GPA01-GW

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			70 mL	1 mL	765437	03/17/21 21:01	JMS	TAL EDI
Total/NA	Analysis	8015B		1			765631	03/18/21 15:35	CDC	TAL EDI
	Instrume	nt ID: CBNAGC2								

Client Sample ID: GPA11-GW Lab Sample ID: 680-196209-7

Date Collected: 03/11/21 22:00

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	660521	03/20/21 11:05	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		1	5 mL	5 mL	660201	03/18/21 16:16	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			245.7 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 19:49	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: GPA05-GW Lab Sample ID: 680-196209-8

Date Collected: 03/11/21 22:30

Matrix: GW

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		200	5 mL	5 mL	660527	03/20/21 16:59	P1C	TAL SAV
	Instrume	nt ID: CMSO2								

Eurofins TestAmerica, Savannah

Page 30 of 41

3/26/2021

Job ID: 680-196209-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: GPA05-GW

Date Collected: 03/11/21 22:30 Date Received: 03/12/21 11:45 Lab Sample ID: 680-196209-8

Matrix: GW

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015D		100	5 mL	5 mL	660201	03/18/21 19:12	DBM	TAL SAV
Total/NA	Prep	3510C			203.8 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 20:04	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: PC01-GW Lab Sample ID: 680-196209-9

Date Collected: 03/11/21 23:25

Date Received: 03/12/21 11:45

Matrix: GW

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	660521	03/20/21 11:28	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		1	5 mL	5 mL	659651	03/15/21 21:34	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			217.8 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 20:19	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Lab Sample ID: 680-196209-10 Client Sample ID: PC02-GW

Date Collected: 03/11/21 23:55

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	660521	03/20/21 11:52	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		1	5 mL	5 mL	659651	03/15/21 21:56	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			199.7 mL	1 mL	659965	03/17/21 11:40	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659987	03/17/21 20:35	DBM	TAL SAV
	Instrume	nt ID: CSGAR1								

Client Sample ID: PC04-GW Lab Sample ID: 680-196209-11 Date Collected: 03/12/21 00:25

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	5 mL	5 mL	660521	03/20/21 18:01	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		10	5 mL	5 mL	660411	03/19/21 20:33	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			209.6 mL	1 mL	660082	03/18/21 07:58	TRA	TAL SAV
Total/NA	Analysis	8015D		1			660455	03/20/21 01:58	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								
Total/NA	Prep	3510C	RE		212.8 mL	1 mL	661024	03/24/21 08:07	TRA	TAL SAV
Total/NA	Analysis	8015D	RE	1			661188	03/24/21 23:22	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								

Eurofins TestAmerica, Savannah

3/26/2021

Page 31 of 41

Matrix: GW

Matrix: GW

Job ID: 680-196209-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: PC05-GW

Lab Sample ID: 680-196209-12

Matrix: GW

Date Collected: 03/12/21 01:00 Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		50	5 mL	5 mL	660521	03/20/21 17:14	P1C	TAL SAV
	Instrume	ent ID: CMSB								
Total/NA	Analysis	8015D		20	5 mL	5 mL	660201	03/18/21 19:56	DBM	TAL SAV
	Instrume	ent ID: CVGWFID1								
Total/NA	Prep	3510C			248.8 mL	1 mL	660082	03/18/21 07:58	TRA	TAL SAV
Total/NA	Analysis	8015D		1			660455	03/20/21 02:13	JCK	TAL SAV
	Instrume	ent ID: CSGAB1								
Total/NA	Prep	3510C	RE		236.9 mL	1 mL	661024	03/24/21 08:07	TRA	TAL SAV
Total/NA	Analysis	8015D	RE	1			661188	03/24/21 23:38	JCK	TAL SAV
	Instrume	ent ID: CSGAB1								

Client Sample ID: PC03-GW

Lab Sample ID: 680-196209-13 Date Collected: 03/12/21 01:15

Matrix: Waste

Date Received: 03/12/21 11:45

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Analyst Type Run Factor Lab Total/NA Prep 3580A 1.00 g 10 mL 765713 03/18/21 20:34 JMS TAL EDI Total/NA Analysis 8015B 765834 03/19/21 15:55 CDC TAL EDI Instrument ID: CBNAGC2

Client Sample ID: OP04-GW

Date Collected: 03/12/21 01:45 Matrix: GW

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	660521	03/20/21 12:15	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		1	5 mL	5 mL	660201	03/18/21 16:38	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			164 mL	1 mL	660082	03/18/21 07:58	TRA	TAL SAV
Total/NA	Analysis	8015D		1			660455	03/20/21 02:29	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								
Total/NA	Prep	3510C	RE		192 mL	1 mL	661024	03/24/21 08:07	TRA	TAL SAV
Total/NA	Analysis	8015D	RE	1			661188	03/24/21 23:53	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: OP01-GW

Lab Sample ID: 680-196209-15 Date Collected: 03/12/21 02:10 Matrix: GW

Date Received: 03/12/21 11:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B nt ID: CMSB		1	5 mL	5 mL	660521	03/20/21 12:38	P1C	TAL SAV
Total/NA	Analysis Instrume	8015D nt ID: CVGWFID1		1	5 mL	5 mL	660201	03/18/21 17:00	DBM	TAL SAV

Eurofins TestAmerica, Savannah

Page 32 of 41

Lab Sample ID: 680-196209-14

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Lab Sample ID: 680-196209-15

Matrix: GW

Job ID: 680-196209-1

Client Sample ID: OP01-GW Date Collected: 03/12/21 02:10

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			242.8 mL	1 mL	660082	03/18/21 07:58	TRA	TAL SAV
Total/NA	Analysis	8015D		1			660455	03/20/21 02:44	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								
Total/NA	Prep	3510C	RE		207.8 mL	1 mL	661024	03/24/21 08:07	TRA	TAL SAV
Total/NA	Analysis	8015D	RE	1			661188	03/25/21 00:08	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: OP03-GW

Lab Sample ID: 680-196209-16

Date Collected: 03/12/21 02:35 Matrix: GW

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	660521	03/20/21 13:01	P1C	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8015D		1	5 mL	5 mL	660411	03/19/21 19:27	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			245.1 mL	1 mL	660082	03/18/21 07:58	TRA	TAL SAV
Total/NA	Analysis	8015D		1			660455	03/20/21 02:59	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								
Total/NA	Prep	3510C	RE		250.5 mL	1 mL	661024	03/24/21 08:07	TRA	TAL SAV
Total/NA	Analysis	8015D	RE	1			661188	03/25/21 00:24	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: MW01-GW

Lab Sample ID: 680-196209-17 Date Collected: 03/12/21 03:10 Matrix: GW

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		200	5 mL	5 mL	660527	03/20/21 15:23	P1C	TAL SAV
	Instrume	nt ID: CMSO2								
Total/NA	Analysis	8015D		100	5 mL	5 mL	660411	03/19/21 19:49	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			221 mL	1 mL	660082	03/18/21 07:58	TRA	TAL SAV
Total/NA	Analysis	8015D		1			660455	03/20/21 03:14	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								
Total/NA	Prep	3510C	RE		231.3 mL	1 mL	661024	03/24/21 08:07	TRA	TAL SAV
Total/NA	Analysis	8015D	RE	1			661188	03/25/21 00:39	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: MW01-GW-DUP

Lab Sample ID: 680-196209-18 Date Collected: 03/12/21 03:15 Matrix: GW

Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		200	5 mL	5 mL	660527	03/20/21 15:47	P1C	TAL SAV
	Instrume	nt ID: CMSO2								

Eurofins TestAmerica, Savannah

Page 33 of 41

Lab Chronicle

Client: Tetra Tech EM Inc. Job ID: 680-196209-1

Project/Site: Brunswick

Client Sample ID: MW01-GW-DUP

Lab Sample ID: 680-196209-18

Date Collected: 03/12/21 03:15 Matrix: GW Date Received: 03/12/21 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015D		100	5 mL	5 mL	660411	03/19/21 20:11	DBM	TAL SAV
Total/NA	Prep	3510C			192.9 mL	1 mL	660082	03/18/21 07:58	TRA	TAL SAV
Total/NA	Analysis	8015D		1			660455	03/20/21 03:30	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								
Total/NA	Prep	3510C	RE		249.5 mL	1 mL	661024	03/24/21 08:07	TRA	TAL SAV
Total/NA	Analysis	8015D	RE	1			661188	03/25/21 00:54	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: Trip Blank

Lab Sample ID: 680-196209-19

Date Collected: 03/11/21 00:00 **Matrix: Water** Date Received: 03/12/21 11:45

Batch Batch Dil Initial Final Batch Prepared Method Number Prep Type Type Run Factor Amount Amount or Analyzed Analyst Lab 8260B TAL SAV Total/NA Analysis 5 mL 5 mL 660521 03/20/21 10:42 P1C

Instrument ID: CMSB Total/NA Analysis 8015D 5 mL 5 mL 659651 03/15/21 20:07 DBM TAL SAV Instrument ID: CVGWFID1

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Accreditation/Certification Summary

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Job ID: 680-196209-1

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Florida	Authority	Program	Identification Number	Expiration Date
	Florida			

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	07-01-21
Massachusetts	State	M-NJ312	06-30-21
New Jersey	NELAP	12028	06-30-21
New York	NELAP	11452	04-01-21
Pennsylvania	NELAP	68-00522	02-28-22
Rhode Island	State	LAO00132	12-30-21
USDA	US Federal Programs	P330-20-00244	11-03-23

3

4

Ω

9

10

11

12

Method Summary

Client: Tetra Tech EM Inc. Job ID: 680-196209-1 Project/Site: Brunswick

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8015D	Gasoline Range Organics (GRO) (GC)	SW846	TAL SAV
8015B	Hydrocarbon Product Identification (GC)	SW846	TAL EDI
8015D	Diesel Range Organics (DRO) (GC)	SW846	TAL SAV
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL EDI
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL SAV
3580A	Waste Dilution	SW846	TAL EDI
5030B	Purge and Trap	SW846	TAL SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900 TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL-8210 らい Sample Specific Notes: COCs Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only 680-196209 Chain of Custody ab Sampling: Job / SDG No. Walk-in Client: ŏ Date/Time Date/Time: Date/Time 3年 COC No: Archive for б. Corr'd: 2/12 Company: Disposal by Lab Carrier: Date: Instructors Site Contact: John Smylle Lab Contact; Lefty Land Received in Laboratory by: SHUW S Other: Return to Cilent RCRA 7 7 7 Fither Perform MS / MSD (Y / N) Filtered Sample (Y / N) NPDES 1145 Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the 8 # of Cont. S 20/20 00 S 5 Date/Time: Date/Time: WORKING DAYS Project Manager: しないと Vi ひいろ Tel/Email: 66み-631 - 5727 Matrix 3 Analysis Turnaround Time TAT if different from Below Regulatory Program: Dow ر 19 Type (C=Comp. G=Grab) Sample T 2 weeks 2 days 1 week 1 day samples 2020 2050 2130 2140 3300 200 CALENDAR DAYS 1955 0010 Sample 2230 3335 2355 1930 Time Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Custody Seal No. Poison B Company: Sample Date 3/13 Company Company 3/11 frige primiting Special Instructions/QC Requirements & Comments; omments Section if the lab is to dispose of the sample. Blud Sample Identification Client Contact 1955 Greggeson Tetra Tod Downswith "petro Possible Hazard Identification: JPA05 - GW - CIE 5PA09-GW 35-MW18-GW MW13-CW MWII-GW 10 E PC05-GW PCO2-GW PCOY-GW PCOI -GW Custody Seals Intag ompany Name: SPADI Relinquished by SPA 11 とらく Project Name: 0P02 Non-Hazard ity/State/Zip: Relinquished Relinquished hone # O d Site: Fax:

Environment Testing

eurofins 😽

513126

Chain of Custody Record

Address:

TestAmerica

Environment Testing TestAmerica

💸 eurofins

Chain of Custody Record 513125

Address:

TAL-8210 Sample Specific Notes: COCs Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) 196209 For Lab Use Only: Months Walk-in Client: Lab Sampling: Job / SDG No. Loc: 680 ō Therm ID No Date/Time: COC No. Company: Disposal by Lab Date: Carrier: Received in Laboratory by: Lyndony 6 KU 0 KU 0 KU Other: Return to Client Received by: Site Contact: Lab Contact: RCRA Filtered Sample (Y/N)
Perform MS/MSD (Y/N) NPDES Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Date/Time:
3/12 //145
Date/Time: # of Cont. 00/00 B 8 Se 7 Date/Time: WORKING DAYS Matrix Wiste GE MO Analysis Turnaround Time 1 Unknown Type (C=Comp, G=Grab) Sample Regulatory Program: TAT if different from Below J 2 days 2 weeks 1 week TOCK Sample Time 0145 0335 0115 0800 0310 0315 CALENDAR DAYS Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Project Manager: Custody Seal No. Poison B Sample Date Tel/Email: Company: Company: Company: 3/12 ١ Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample. Sample Identification MWOI-GW-DUP Yes Client Contact MW01-GH Possible Hazard Identification: 0803-GW JP04-GW 103-6h 0P0 | - GW rip Blank Custody Seals Intact elinquished by: Company Name shed by Project Name: Sity/State/Zip: Phone: # O d aX:

Page 38 of 41

3/26/2021

Chain of Custody Record

Eurofins TestAmerica, Savannah

5102 LaRoche Avenue Savannah, GA 31404

💸 eurofins

Environment Testing

Johnson Or Or T - TSP Dodecahydrate Vote: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Special Instructions/Note: Z - other (specify) M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 U - Acetone V - MCAA W - pH 4-5 Please supply chromagrams Please supply chromagrams Please supply chromagrams Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client — Disposal By Lab — Archive For Mon Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid COC No: 680-646667.1 680-196209-Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA 020 Total Number of containers Date/11/116. Date/Time: lethod of Shipment 2 2 2 2 Carrier Tracking No(s) State of Origin: Georgia **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: Accreditations Required (See note): NELAP - Florida Called by: " Jerry.Lanier@Eurofinset.com Received by: dentification × 3015B_id/3580A (MOD) Hydrocarbon Product Lab PM: Lanier, Jerry A × × 8015B_id/3510C Hydrocarbon Product Identification Perform MS/MSD (Yes or No) lime: Field Fittered Sample (Yes or No) (W=water, S=solid, O=waste/oil, Preservation Code: Water Waste Matrix Water Company (C=comp, G=grab) Sample Type Primary Deliverable Rank: 2 Eastern 01:15 Sample Eastern 21:40 Eastern Date: (days) Due Date Requested: 3/25/2021 Sample Date 3/11/21 3/11/21 3/12/21 Project #: 68025268 Date/Time: Custody Seal No.: 14 30 342 Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Sample Identification - Client ID (Lab ID) Phone: 912-354-7858 Fax: 912-352-0165 hone: 732-549-3900(Tel) 732-549-3679(Fax) Possible Hazard Identification estAmerica Laboratories, Inc. GPA01-GW (680-196209-6) PC03-GW (680-196209-13) MW11-GW (680-196209-2) Empty Kit Relinquished by: Custody Seals Intact: 777 New Durham Road Shipping/Receiving Inconfirmed inquished by: State, Zip: NJ, 08817 Brunswick Edison

Client: Tetra Tech EM Inc. Job Number: 680-196209-1

Login Number: 196209 List Source: Eurofins TestAmerica, Savannah

List Number: 1

Creator: Banda, Christy S

Cleator. Banda, Christy S		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Tetra Tech EM Inc.

List Source: Eurofins TestAmerica, Edison

List Creation: 03/16/21 11:30 AM

Job Number: 680-196209-1

List Number: 2

Creator: Armbruster, Chris

Login Number: 196209

Creator: Armbruster, Chris		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1430342
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.1°C IR11
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Savannah

Method 8015B - ID

Hydrocarbon Product Identification (GC) by Method 8015B

FORM IV DIESEL RANGE ORGANICS METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Edison	Job No.: 680-196209-1
SDG No.:	
Lab File ID: 2F010198.D	Lab Sample ID: MB 460-765437/1-A
Matrix: Water	Date Extracted: 03/17/2021 21:01
Instrument ID: CBNAGC2	Date Analyzed: 03/18/2021 15:09
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
MW11-GW	680-196209-2	2F010199.D	03/18/2021 15:22
GPA01-GW	680-196209-6	2F010200.D	03/18/2021 15:35

FORM IV DIESEL RANGE ORGANICS METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Edison	Job No.: <u>680-196209-1</u>
SDG No.:	
Lab File ID: 2F010236.D	Lab Sample ID: MB 460-765713/1-A
Matrix: Waste	Date Extracted: 03/18/2021 20:34
Instrument ID: CBNAGC2	Date Analyzed: 03/19/2021 15:17
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
PC03-GW	680-196209-13	2F010239.D	03/19/2021 15:55

FORM I DIESEL RANGE ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison Job No.: 680-196209-1 SDG No.: Client Sample ID: MW11-GW Lab Sample ID: 680-196209-2 Matrix: GW Lab File ID: 2F010199.D Analysis Method: 8015B Date Collected: 03/11/2021 19:55 Date Extracted: 03/17/2021 21:01 Extraction Method: 3510C Sample wt/vol: 50(mL) Date Analyzed: 03/18/2021 15:22 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) GC Column: Rtx-Mineral Oil ID: 0.32(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 765631 Units: ug/mL CAS NO. COMPOUND NAME RESULT Q NONE NONE

NC

STL00945

Qualitative Method

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\2F010199.D

Lims ID: 680-196209-I-2-A

Client ID: MW11-GW

Sample Type: Client

Inject. Date: 18-Mar-2021 15:22:21 ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 460-0125614-004

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 19-Mar-2021 14:10:08 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1630

RT Exp RT Dlt RT OnCol Amt (min.) (min.) Response ug/ml Flags

9 Qualitative Method

5.892 5.895 -0.003 36859 NC

QC Flag Legend

Processing Flags

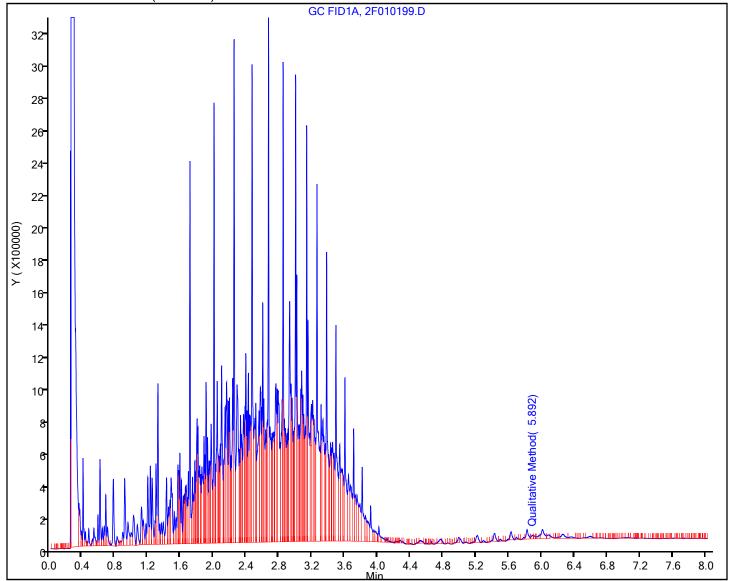
NC - Not Calibrated

Eurofins TestAmerica, Edison

 Data File:
 \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\2F010199.D

 Injection Date:
 18-Mar-2021 15:22:21
 Instrument ID:
 CBNAGC2

 Lims ID:
 680-196209-I-2-A
 Lab Sample ID:
 460-196209-2


Client ID: MW11-GW

Operator ID: ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm)

FORM I DIESEL RANGE ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison Job No.: 680-196209-1 SDG No.: Client Sample ID: GPA01-GW Lab Sample ID: 680-196209-6 Matrix: Water Lab File ID: 2F010200.D Analysis Method: 8015B Date Collected: 03/11/2021 21:40 Date Extracted: 03/17/2021 21:01 Extraction Method: 3510C Sample wt/vol: 70(mL) Date Analyzed: 03/18/2021 15:35 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) GC Column: Rtx-Mineral Oil ID: 0.32(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 765631 Units: ug/mL CAS NO. COMPOUND NAME RESULT Q NONE NONE

NC

STL00945

Qualitative Method

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\2F010200.D

Lims ID: 680-196209-A-6-A

Client ID: GPA01-GW

Sample Type: Client

Inject. Date: 18-Mar-2021 15:35:11 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 460-0125614-005

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 19-Mar-2021 14:10:08 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1630

RT Exp RT Dlt RT OnCol Amt (min.) (min.) Response ug/ml Flags

9 Qualitative Method

5.887 5.895 -0.008 39153 NC

QC Flag Legend

Processing Flags

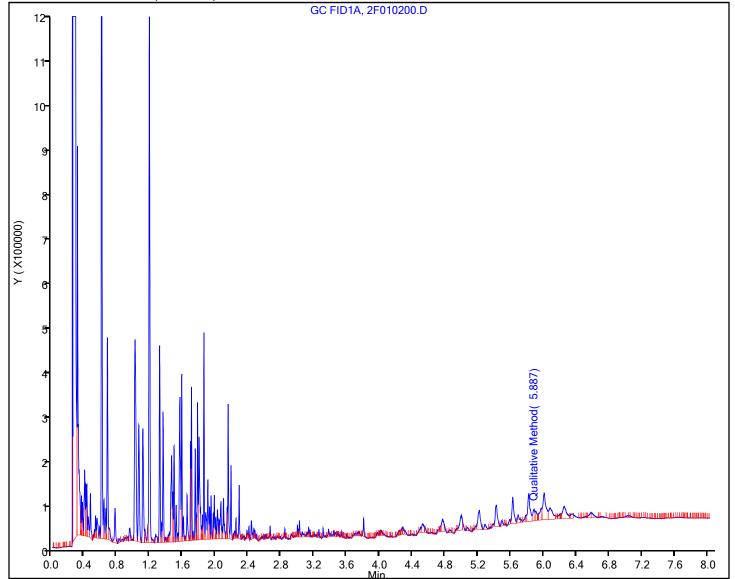
NC - Not Calibrated

Eurofins TestAmerica, Edison

 Data File:
 \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\2F010200.D

 Injection Date:
 18-Mar-2021 15:35:11
 Instrument ID:
 CBNAGC2

 Lims ID:
 680-196209-A-6-A
 Lab Sample ID:
 460-196209-6


Client ID: GPA01-GW

Operator ID: ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm)

FORM I DIESEL RANGE ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison Job No.: 680-196209-1 SDG No.: Client Sample ID: PC03-GW Lab Sample ID: 680-196209-13 Matrix: Waste Lab File ID: 2F010239.D Analysis Method: 8015B Date Collected: 03/12/2021 01:15 Date Extracted: 03/18/2021 20:34 Extraction Method: 3580A Sample wt/vol: 1.00(g) Date Analyzed: 03/19/2021 15:55 Con. Extract Vol.: 10(mL) Dilution Factor: 1 Injection Volume: 1(uL) GC Column: Rtx-Mineral Oil ID: 0.32(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 765834 Units: ug/mL CAS NO. COMPOUND NAME RESULT Q NONE NONE

NC

STL00945

Qualitative Method

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\\2F010239.D

Lims ID: 680-196209-A-13-A

Client ID: PC03-GW Sample Type: Client

Inject. Date: 19-Mar-2021 15:55:36 ALS Bottle#: 24 Worklist Smp#: 30

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 460-0125668-030

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 20-Mar-2021 12:18:00 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1668

First Level Reviewer: hamzik Date: 20-Mar-2021 12:20:52

RT Exp RT Dlt RT OnCol Amt (min.) (min.) Response ug/ml Flags

9 Qualitative Method

5.898 5.895 0.003 4393 NC

QC Flag Legend
Processing Flags

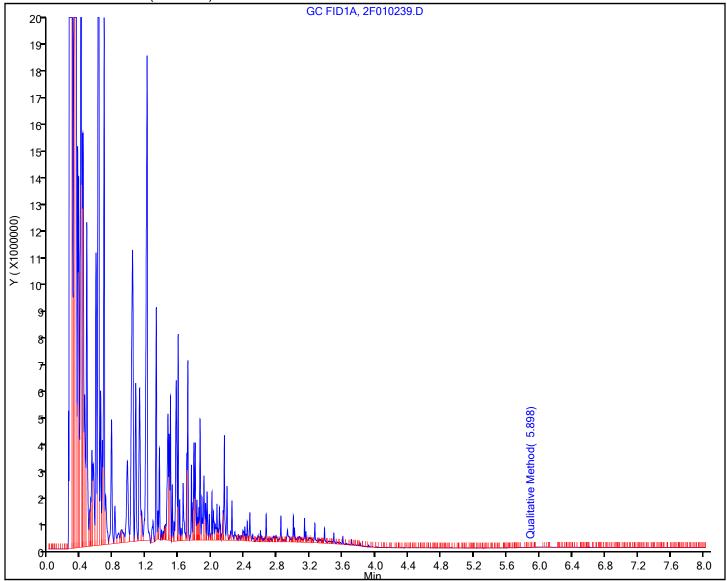
NC - Not Calibrated

Eurofins TestAmerica, Edison

 Data File:
 \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\2F010239.D

 Injection Date:
 19-Mar-2021 15:55:36
 Instrument ID:
 CBNAGC2

 Lims ID:
 680-196209-A-13-A
 Lab Sample ID:
 460-196209-13


Client ID: PC03-GW

Operator ID: ALS Bottle#: 24 Worklist Smp#: 30

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm)

FORM I DIESEL RANGE ORGANICS ANALYSIS DATA SHEET

Lab Name: Eu	rofins TestAmerica, Edison	Job No.: 680-196209-1						
SDG No.:								
Client Sample	e ID:	Lab	Sample ID:	MB 460	-765437/1-A			
Matrix: Water			File ID: 2	F010198	.D			
Analysis Method: 8015B			e Collected	:				
Extraction Method: 3510C			e Extracted	: 03/1	.7/2021 21:	01		
Sample wt/vol: 1000(mL)			Date Analyzed: 03/18/2021 15:09					
Con. Extract	Vol.: 1(mL)	Dilution Factor: 1						
Injection Vol	lume: 1(uL)	GC	GC Column: Rtx-Mineral Oil ID: 0.32(mm)					
% Moisture:		— GPC	GPC Cleanup:(Y/N) N					
Analysis Batch No.: 765631		 Units: ug/mL						
CAS NO.	COMPOUND NAME		RESULT	Q	NONE	NONE		
STL00945	Qualitative Method		NC					

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\\2F010198.D

Lims ID: MB 460-765437/1-A

Client ID:

Sample Type: MB

Inject. Date: 18-Mar-2021 15:09:38 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 460-0125614-003

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 19-Mar-2021 14:10:08 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1630

	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Response	Cal Amt ug/ml	OnCol Amt ug/ml	Flags
_	1 n-Dec	ane					
	0.768	0.770	-0.002	1075		0.1113	
/		iesel Fuel	050)	4500040			
		(0.646-4.3	356)	1538816		NC	
,	A 3 C10- 2.504	·C28 (0.670-4.3	337)	314137		26.7	
(\$ 4 o-Tei		0.000	0504		0.4075	
		3.192	0.006	2561		0.1875	
,	A 5 C10- 3.212	·C44 (0.670-5.	753)	850626		65.6	
		acosane	0.000	11000		0.7700	
	4.245 A 7 C28-		0.008	11029		0.7763	
,		·C44 (4.137-5.	753)	585325		NC	
	8 Tetrat	tetracontar	ne				
	5.672	5.653	0.019	82627		5.16	
		tative Meth		104405		NO	
	5.869	5.895	-0.026	104495		NC	

QC Flag Legend

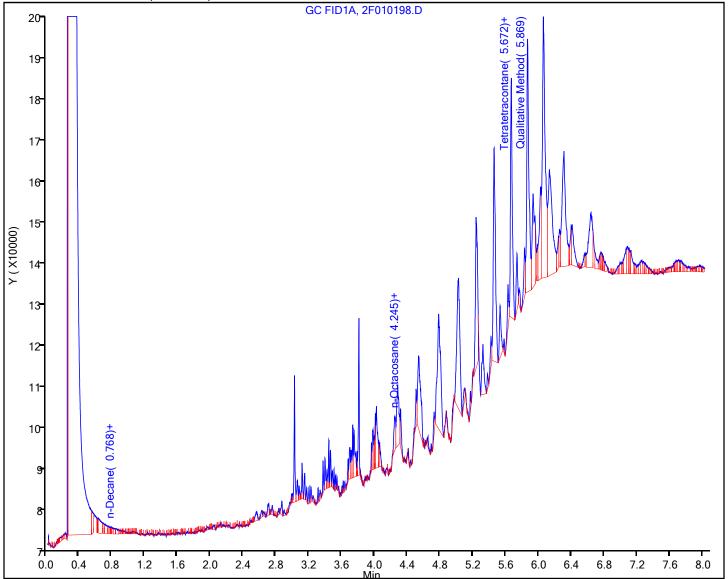
Processing Flags

NC - Not Calibrated

Eurofins TestAmerica, Edison

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\2F010198.D Injection Date: 18-Mar-2021 15:09:38 Instrument ID: CBNAGC2

Lims ID: MB 460-765437/1-A


Client ID:

Operator ID: ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm)

Eurofins TestAmerica, Edison

Recovery Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\\2F010198.D

Lims ID: MB 460-765437/1-A

Client ID:

Sample Type: MB

Inject. Date: 18-Mar-2021 15:09:38 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 460-0125614-003

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 19-Mar-2021 14:10:08 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1630

Compound	Amount Added	Amount Recovered	% Rec.
----------	-----------------	---------------------	--------

FORM I DIESEL RANGE ORGANICS ANALYSIS DATA SHEET

Lab Name: Eu	rofins TestAmerica, Edison	Job No.: 680-196209-1				
SDG No.:						
Client Sample	e ID:	Lab S	ample ID:	MB 460	-765713/1-A	
Matrix: Waste			ile ID: 2	F010236	. D	
Analysis Method: 8015B			- Collected	.:		
Extraction M	 Date	Date Extracted: 03/18/2021 20:34				
Sample wt/vo	Date Analyzed: 03/19/2021 15:17					
Con. Extract	Vol.: 10(mL)	Dilution Factor: 1				
Injection Vo.	lume: 1(uL)	GC Column: Rtx-Mineral Oil ID: 0.32(mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 765834		Units: ug/mL				
CAS NO.	COMPOUND NAME		RESULT	Q	NONE	NONE
STT 00945	Oualitative Method		0 000			

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\2F010236.D

Lims ID: MB 460-765713/1-A

Client ID:

Sample Type: MB

Inject. Date: 19-Mar-2021 15:17:37 ALS Bottle#: 21 Worklist Smp#: 27

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 460-0125668-027

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 20-Mar-2021 12:18:00 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1668

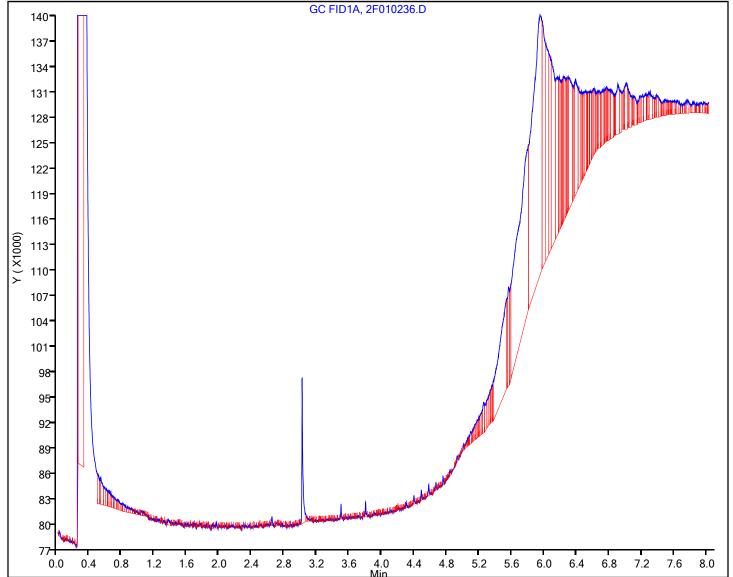
First Level Reviewer: hamzik Date: 20-Mar-2021 12:18:12

RT Exp RT Dlt RT Cal Amt OnCol Amt (min.) (min.) Response ug/ml ug/ml Flags

Eurofins TestAmerica, Edison

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\2F010236.D Injection Date: 19-Mar-2021 15:17:37 Instrument ID: CBNAGC2

Lims ID: MB 460-765713/1-A


Client ID:

Operator ID: ALS Bottle#: 21 Worklist Smp#: 27

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm)

Report Date: 20-Mar-2021 12:18:13 Chrom Revision: 2.3 05-Feb-2021 00:13:28 User Disabled Compound Report

Eurofins TestAmerica, Edison

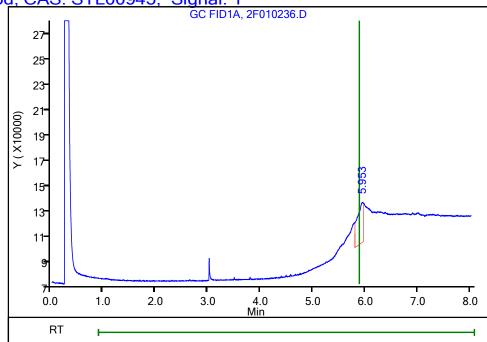
Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\2F010236.D

Injection Date: 19-Mar-2021 15:17:37 Instrument ID: CBNAGC2

Lims ID: MB 460-765713/1-A

Client ID:

Operator ID: ALS Bottle#: 21 Worklist Smp#: 27


Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm) Detector GC FID1A

9 Qualitative Method, CAS: STL00945, Signal: 1

RT: 5.95 Response: 253253 Amount: 0

Reviewer: hamzik, 20-Mar-2021 12:18:00

Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

FORM I DIESEL RANGE ORGANICS ANALYSIS DATA SHEET

Lab Name: Eur	Job	Job No.: 680-196209-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	PIBLK	460-765631/	1
Matrix: Water			File ID: 2	F010196	5.D	
Analysis Method: 8015B			e Collected	:		
Extraction Method:			e Extracted	:		
Sample wt/vol: 1(mL) Date Analyzed: 03/18/2021 14:44						
Con. Extract	Vol.:	Dilution Factor: 1				
Injection Vol	ume: 1(uL)	GC	Column: Rtx	-Minera	oil ID: 0	.32(mm)
% Moisture: _		GPC	Cleanup: (Y	/N) <u>N</u>		
Analysis Batch No.: 765631		Units: ug/mL				
CAS NO.	COMPOUND NAME		RESULT	Q	NONE	NONE
STL00945	Qualitative Method		NC			

> Eurofins TestAmerica, Edison **Target Compound Quantitation Report**

\\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\2F010196.D Data File:

Lims ID: **PIBLK**

Client ID:

Sample Type: **PIBLK**

Inject. Date: 18-Mar-2021 14:44:14 ALS Bottle#: Worklist Smp#: 1 1

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 460-0125614-001

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 19-Mar-2021 08:03:29 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: **External Standard** Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1630

	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Response	Cal Amt ug/ml	OnCol Amt ug/ml	Flags
_	1 n-Dec	cane					
	0.780	0.770	0.010	1815		0.1879	
/		iesel Fuel					
		(0.646-4.3	356)	1668827		NC	
/	4 3 C10- 2.494	.C28 (0.670-4.:	337)	219871		18.7	
,	\$ 4 o-Te	rphenyl 3.192	-0.002	598501	40.0	43.8	
,	3.190 A 5 C10-		-0.002	39030 I	40.0	43.0	
,		(0.670-5.	753)	917219		70.7	
		acosane					
		4.237	-0.019	2679		0.1886	
/	4 7 C28- 4 913	·C44 (4.137-5.	753)	730226		NC	
		tetracontai	,	700220		110	
	5.607	5.653	-0.046	14422		0.9012	
		tative Meth					
	5.905	5.895	0.010	57838		NC	

QC Flag Legend

Processing Flags

NC - Not Calibrated

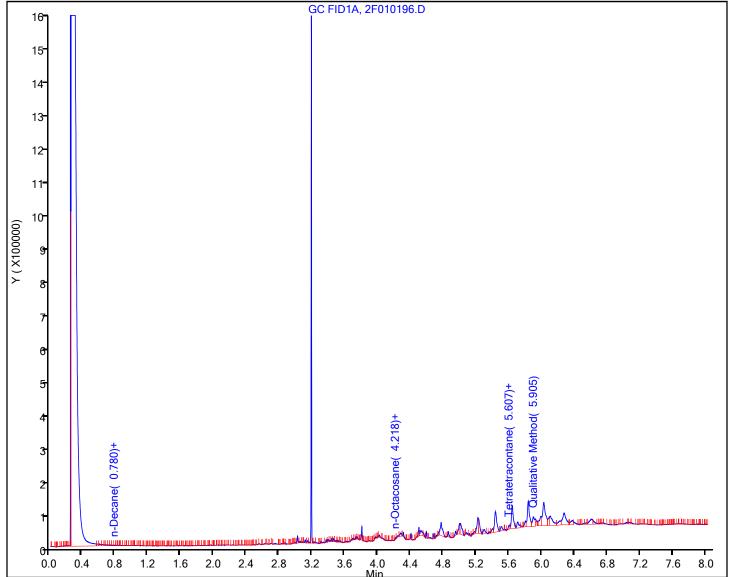
Reagents:

SGPIBLKDRO_00020 Amount Added: 1.00 Units: mL

Eurofins TestAmerica, Edison

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\2F010196.D Injection Date: 18-Mar-2021 14:44:14 Instrument ID: CBNAGC2

Lims ID: PIBLK


Client ID:

Operator ID: ALS Bottle#: 1 Worklist Smp#: 1

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm)

Report Date: 19-Mar-2021 14:10:07 Chrom Revision: 2.3 05-Feb-2021 00:13:28

Eurofins TestAmerica, Edison

Recovery Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\\2F010196.D

Lims ID: PIBLK

Client ID:

Sample Type: PIBLK

Inject. Date: 18-Mar-2021 14:44:14 ALS Bottle#: 1 Worklist Smp#: 1

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 460-0125614-001

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210318-125614.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 19-Mar-2021 08:03:29 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1630

Compound	Amount Added	Amount Recovered	% Rec.
\$ 4 o-Terphenyl	40.0	43.8	109.56

FORM I DIESEL RANGE ORGANICS ANALYSIS DATA SHEET

Lab Name: Eu:	rofins TestAmerica, Edison	Job No.: 680-196209-1							
SDG No.:									
Client Sample	e ID:	Lab Sample ID: PIBLK 460-765834/1							
Matrix: Wast	e	Lab	File ID: 2	F010207	'.D				
Analysis Metl	hod: 8015B	Dat	e Collected	:					
Extraction Me	ethod:	Dat	e Extracted	:					
Sample wt/vo	l: 1(mL)	Date Analyzed: 03/19/2021 07:18							
Con. Extract	Vol.:	Dilution Factor: 1							
Injection Vol	lume: 1(uL)	GC Column: Rtx-Mineral Oil ID: 0.32(mm)							
% Moisture:		GPC Cleanup:(Y/N) N							
Analysis Bat	ch No.: 765834	Units: ug/mL							
CAS NO.	COMPOUND NAME		RESULT	Q	NONE	NONE			
STL00945	Qualitative Method	·	0.000						

Report Date: 19-Mar-2021 12:06:29 Chrom Revision: 2.3 05-Feb-2021 00:13:28

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\\2F010207.D

Lims ID: PIBLK

Client ID:

Sample Type: PIBLK

Inject. Date: 19-Mar-2021 07:18:09 ALS Bottle#: 1 Worklist Smp#: 1

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info:

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 19-Mar-2021 09:56:19 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1627

First Level Reviewer: hamzik Date: 19-Mar-2021 12:06:28

RT Exp RT Dlt RT Cal Amt OnCol Amt (min.) (min.) Response ug/ml ug/ml Flags

\$ 4 o-Terphenyl

3.189 3.190 -0.001 587886 40.0 43.0

QC Flag Legend
Processing Flags

Reagents:

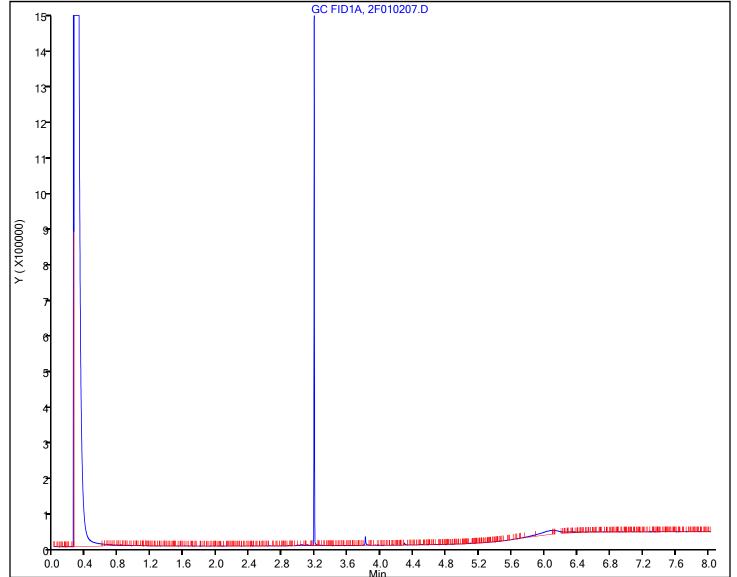
SGPIBLKDRO_00020 Amount Added: 1.00 Units: mL

Report Date: 19-Mar-2021 12:06:29 Chrom Revision: 2.3 05-Feb-2021 00:13:28

Eurofins TestAmerica, Edison

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\2F010207.D Injection Date: 19-Mar-2021 07:18:09 Instrument ID: CBNAGC2

Lims ID: PIBLK


Client ID:

Operator ID: ALS Bottle#: 1 Worklist Smp#: 1

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm)

Report Date: 19-Mar-2021 12:06:29 Chrom Revision: 2.3 05-Feb-2021 00:13:28

Eurofins TestAmerica, Edison

Recovery Report

Data File: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\\2F010207.D

Lims ID: PIBLK

Client ID:

Sample Type: PIBLK

Inject. Date: 19-Mar-2021 07:18:09 ALS Bottle#: 1 Worklist Smp#: 1

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info:

Operator ID: Instrument ID: CBNAGC2

Method: \\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\DRO2F.m

Limit Group: GC 8015 DRO ICAL

Last Update: 19-Mar-2021 09:56:19 Calib Date: 23-Oct-2020 14:16:38

Integrator: Falcon

Quant Method: External Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Edison\ChromData\CBNAGC2\20201023-118916.b\2F001700.D

Column 1: Rtx Mineral Oil (0.32 mm) Det: GC FID1A

Process Host: CTX1627

First Level Reviewer: hamzik Date: 19-Mar-2021 12:06:28

Compound	Amount Added	Amount Recovered	% Rec.
\$ 4 o-Terphenyl	40.0	43.0	107.62

Chrom Revision: 2.3 05-Feb-2021 00:13:28 Report Date: 19-Mar-2021 12:06:29

User Disabled Compound Report

Eurofins TestAmerica, Edison

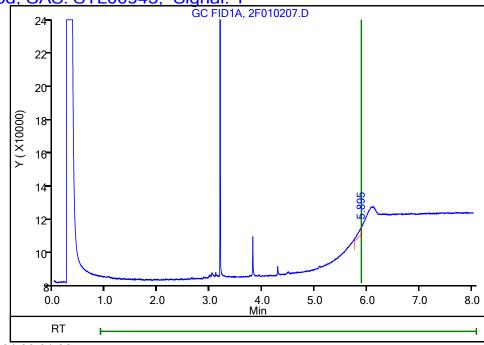
\\chromfs\Edison\ChromData\CBNAGC2\20210319-125668.b\2F010207.D Data File:

19-Mar-2021 07:18:09 Injection Date: Instrument ID: CBNAGC2

Lims ID: **PIBLK**

Client ID:

Operator ID: ALS Bottle#: Worklist Smp#: 1 1


Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: DRO2F Limit Group: GC 8015 DRO ICAL

Column: Rtx Mineral Oil (0.32 mm) Detector GC FID1A

9 Qualitative Method, CAS: STL00945, Signal: 1

RT: 5.89 19334 Response: Amount: 0

Reviewer: hamzik, 19-Mar-2021 09:01:06

Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

DIESEL RANGE ORGANICS ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Edison	Job No.: <u>680-196209-1</u>
SDG No.:	
Instrument ID: CBNAGC2	Start Date: 03/18/2021 14:44
Analysis Batch Number: 765631	End Date: 03/18/2021 16:13

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
PIBLK 460-765631/1		03/18/2021 14:44	1	2F010196.D	Rtx-Mineral Oil 0.32(mm)
CCVRT 460-765631/2		03/18/2021 14:56	1		Rtx-Mineral Oil 0.32(mm)
MB 460-765437/1-A		03/18/2021 15:09	1	2F010198.D	Rtx-Mineral Oil 0.32(mm)
680-196209-2	MW11-GW	03/18/2021 15:22	1	2F010199.D	Rtx-Mineral Oil 0.32(mm)
680-196209-6	GPA01-GW	03/18/2021 15:35	1	2F010200.D	Rtx-Mineral Oil 0.32(mm)
ZZZZZ		03/18/2021 15:47	1		Rtx-Mineral Oil 0.32(mm)
ZZZZZ		03/18/2021 16:00	1		Rtx-Mineral Oil 0.32(mm)
ZZZZZ		03/18/2021 16:13	1		Rtx-Mineral Oil 0.32(mm)

DIESEL RANGE ORGANICS ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Edison	Job No.: <u>680-196209-1</u>
SDG No.:	
Instrument ID: CBNAGC2	Start Date: 03/19/2021 07:18
Analysis Batch Number: 765834	End Date: 03/19/2021 15:55

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
PIBLK 460-765834/1		03/19/2021 07:18	1	2F010207.D	Rtx-Mineral Oil 0.32(mm)
CCVRT 460-765834/2		03/19/2021 07:47	1		Rtx-Mineral Oil 0.32(mm)
MB 460-765713/1-A		03/19/2021 15:17	1	2F010236.D	Rtx-Mineral Oil 0.32(mm)
ZZZZZ		03/19/2021 15:30	1		Rtx-Mineral Oil 0.32(mm)
ZZZZZ		03/19/2021 15:42	1		Rtx-Mineral Oil 0.32(mm)
680-196209-13	PC03-GW	03/19/2021 15:55	1	2F010239.D	Rtx-Mineral Oil 0.32(mm)

DIESEL RANGE ORGANICS BATCH WORKSHEET

Lab Name: Eurofins TestAmerica, Edison Job No.: 680-196209-1

SDG No.:

Batch Number: 765437 Batch Start Date: 03/17/21 21:00 Batch Analyst: Silva, Jose

Batch Method: 3510C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	ReceivedpH	AnalysisComment	
MB 460-765437/1		3510C, 8015B		1000 mL	1 mL	7 SU		
680-196209-I-2	MW11-GW	3510C, 8015B	Т	50 mL	1 mL	7 SU	Limited Volume	
680-196209-A-6	GPA01-GW	3510C, 8015B	Т	70 mL	1 mL	7 SU	Limited Volume	

Batch Notes						
Batch Comment	Fingerprint Water					
Analyst ID - Concentration	Jose					
Concentration 1 Corrected Temperature	32 Degrees C					
Equipment ID - Concentration 1	31869					
Analyst ID - Extraction	Jose					
Method/Fraction	3510C / Fingerprint water					
Na2SO4 ID	198855					
pH Indicator ID	HC-025487					
Prep Solvent ID	Methylene Chloride: 275352					
Prep Solvent Volume Used	180 mL mL					
Analyst ID - Spike Analyst	Jose					
Thermometer ID - Concentration 1	31869					
Concentration 1 Uncorrected Temperature	32 Degrees C					
Vial Lot Number	20046051					

Basis	Basis	Description
Т	Total/NA	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

DIESEL RANGE ORGANICS BATCH WORKSHEET

Lab Name: Eurofins TestAmerica, Edison Job No.: 680-196209-1

SDG No.:

Batch Number: 765713 Batch Start Date: 03/18/21 20:33 Batch Analyst: Silva, Jose

Batch Method: 3580A Batch End Date:

Lab Sample ID	Client Sample ID	Method	Chain	Basis	InitialAmount	FinalAmount		
MB 460-765713/1		3580A,	8015B		1.00 g	10 mL		
680-196209-A-13	PC03-GW	3580A,	8015B	Т	1.00 g	10 mL		

Batch Notes				
Batch Comment	Fingerprint Waste			
Analyst ID - Extraction	Jose			
Method/Fraction	Fingerprint Waste			
Prep Solvent ID	MeCl2: 275352			

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-196067-1 Client Project/Site: Brunswick

For:

Tetra Tech EM Inc. 1955 Evergreen Blvd. Bldg. 200; Suite 300 Duluth, Georgia 30096

Attn: Jessica Vickers

Jerry Jamier

Authorized for release by: 3/25/2021 12:26:10 PM

Jerry Lanier, Project Manager I (912)250-0281

Jerry.Lanier@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Job ID: 680-196067-1 Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description** Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

GC VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier **Qualifier Description**

Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Sample Summary

Client: Tetra Tech EM Inc. Job ID: 680-196067-1 Project/Site: Brunswick

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-196067-1	PC1-SB	Solid	03/08/21 19:10	03/10/21 13:45
680-196067-2	PC2-SB	Solid	03/08/21 20:10	03/10/21 13:45
680-196067-3	PC3-SB	Solid	03/08/21 21:25	03/10/21 13:45
680-196067-4	PC4-SB	Solid	03/08/21 22:30	03/10/21 13:45
680-196067-5	SS1-GW	Water	03/09/21 18:15	03/10/21 13:45
680-196067-6	SS2-GW	Water	03/09/21 18:35	03/10/21 13:45
680-196067-7	OP1-SB	Solid	03/09/21 19:30	03/10/21 13:45
680-196067-8	OP2-SB	Solid	03/09/21 20:15	03/10/21 13:45
80-196067-9	OP3-SB	Solid	03/09/21 20:55	03/10/21 13:45
880-196067-10	OP5-GW	Water	03/09/21 20:20	03/10/21 13:45
680-196067-11	OP4-SB	Solid	03/09/21 21:55	03/10/21 13:45
680-196067-12	PC5-SB	Solid	03/10/21 02:55	03/10/21 13:45
680-196067-13	PC5-SB-DUP	Solid	03/10/21 03:00	03/10/21 13:45
680-196067-14	Trip Blank 1	Water	03/08/21 00:00	03/10/21 13:45
680-196067-15	Trip Blank 2	Water	03/08/21 00:00	03/10/21 13:45

Case Narrative

Client: Tetra Tech EM Inc.

Job ID: 680-196067-1

Project/Site: Brunswick

Job ID: 680-196067-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Tetra Tech EM Inc.

Project: Brunswick

Report Number: 680-196067-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 3/10/2021 1:45 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.8° C and 1.8° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples PC1-SB (680-196067-1), PC2-SB (680-196067-2), PC3-SB (680-196067-3), PC4-SB (680-196067-4), OP1-SB (680-196067-7), OP2-SB (680-196067-8), OP3-SB (680-196067-9), OP4-SB (680-196067-11), PC5-SB (680-196067-12) and PC5-SB-DUP (680-196067-13) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW846 Method 8260B. The samples were prepared on 03/11/2021 and analyzed on 03/17/2021, 03/18/2021, 03/19/2021 and 03/22/2021.

Surrogate recovery for the following sample was outside the upper control limit: PC2-SB (680-196067-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

The method blank for analytical batch 680-660167 contained Toluene above the method detection limit (MDL). Associated samples were not re-analyzed because results were less than 1/2 of the reporting limit.

The BTEX and Xylene hits in this sample are likely the result of carry over from another sample in the same project that maxed out the detector. This sample is a rerun for ISTD failures so there is no more volume to run straight. Medium level soil analysis was run with the sample being non-detect for all target analytes. The straight run has been reported.

OP4-SB (680-196067-11)

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-659073 and analytical batches 680-659926, and 680-660392.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples SS1-GW (680-196067-5), SS2-GW (680-196067-6), OP5-GW (680-196067-10), Trip Blank 1 (680-196067-14) and Trip Blank 2 (680-196067-15) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 03/13/2021.

Sample OP5-GW (680-196067-10)[100X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DIESEL RANGE ORGANICS (DRO)

4

J

_

8

9

10

Eurofins TestAmerica, Savannah 3/25/2021

Case Narrative

Client: Tetra Tech EM Inc.

Job ID: 680-196067-1

Project/Site: Brunswick

Job ID: 680-196067-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

Samples PC1-SB (680-196067-1), PC2-SB (680-196067-2), PC3-SB (680-196067-3), PC4-SB (680-196067-4), OP1-SB (680-196067-7), OP2-SB (680-196067-8), OP3-SB (680-196067-9), OP4-SB (680-196067-11), PC5-SB (680-196067-12) and PC5-SB-DUP (680-196067-13) were analyzed for Diesel Range Organics (DRO) in accordance with SW 846 8015C DRO. The samples were prepared on 03/12/2021 and analyzed on 03/12/2021, 03/13/2021 and 03/14/2021.

The method blank for preparation batch 680-659183 and analytical batch 680-659296 contained Diesel Range Organics [C10-C28] above the method detection limit (MDL). Associated samples were not re-analyzed because results were less than the reporting limit (RL).

Diesel Range Organics [C10-C28] was detected in method blank MB 680-659183/13-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Samples PC3-SB (680-196067-3)[20X], PC4-SB (680-196067-4)[10X], OP3-SB (680-196067-9)[5X], PC5-SB (680-196067-12)[5X] and PC5-SB-DUP (680-196067-13)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

8015D DRO

Samples SS1-GW (680-196067-5), SS2-GW (680-196067-6) and OP5-GW (680-196067-10) were analyzed for 8015D DRO in accordance with EPA SW-846 8015D. The samples were prepared and analyzed on 03/12/2021.

The following sample contained residual chlorine upon receipt: SS1-GW (680-196067-5).

The method blank for preparation batch 680-659304 and analytical batch 680-659296 contained C10-C28 above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction of the samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

8015D GRO

Samples SS1-GW (680-196067-5), SS2-GW (680-196067-6) and OP5-GW (680-196067-10) were analyzed for 8015D GRO in accordance with EPA SW-846 8015D. The samples were analyzed on 03/12/2021.

Toluene was detected in method blank MB 680-660167/12 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Sample OP5-GW (680-196067-10)[100X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

8015D GRO

Samples PC1-SB (680-196067-1), PC2-SB (680-196067-2), PC3-SB (680-196067-3), PC4-SB (680-196067-4), OP1-SB (680-196067-7), OP2-SB (680-196067-8), OP3-SB (680-196067-9), OP4-SB (680-196067-11), PC5-SB (680-196067-12) and PC5-SB-DUP (680-196067-13) were analyzed for 8015D GRO in accordance with 8015D. The samples were prepared on 03/11/2021 and analyzed on 03/11/2021 and 03/12/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Samples PC1-SB (680-196067-1), PC2-SB (680-196067-2), PC3-SB (680-196067-3), PC4-SB (680-196067-4), OP1-SB (680-196067-7), OP2-SB (680-196067-8), OP3-SB (680-196067-9), OP4-SB (680-196067-11), PC5-SB (680-196067-12) and PC5-SB-DUP (680-196067-13) were analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 03/11/2021.

Δ

_

6

7

10

11

12

Case Narrative

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Job ID: 680-196067-1

Job ID: 680-196067-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

8

9

Client Sample ID: PC1-SB

Date Collected: 03/08/21 19:10

Date Received: 03/10/21 13:45

Date Collected: 03/08/21 20:10

Ethylbenzene

Lab Sample ID: 680-196067-1

Matrix: Solid

Percent Solids: 76.8

Job ID: 680-196067-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		7.2	1.0	ug/Kg		03/11/21 10:43	03/18/21 19:32	1
Ethylbenzene	<1.9		7.2	1.9	ug/Kg	₽	03/11/21 10:43	03/18/21 19:32	1
Toluene	3.9	J B	7.2	1.2	ug/Kg	₩	03/11/21 10:43	03/18/21 19:32	1
Xylenes, Total	6.1	J	14	1.6	ug/Kg	₽	03/11/21 10:43	03/18/21 19:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				03/11/21 10:43	03/18/21 19:32	1
Dibromofluoromethane (Surr)	108		70 - 130				03/11/21 10:43	03/18/21 19:32	1
1,2-Dichloroethane-d4 (Surr)	115		70 - 130				03/11/21 10:43	03/18/21 19:32	1
Toluene-d8 (Surr)	95		70 - 130				03/11/21 10:43	03/18/21 19:32	1
Method: 8015D - Gasoline Rar	nge Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<3.5		14	3.5	mg/Kg	‡	03/11/21 10:19	03/11/21 21:17	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	90		70 - 131				03/11/21 10:19	03/11/21 21:17	100

Method: 8015D - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed <u>~</u> Oil Range Organics (C20-C36) <26 26 mg/Kg 03/12/21 07:28 03/12/21 23:21 Diesel Range Organics [C10-C28] 4.2 2.7 mg/Kg ₩ 03/12/21 07:28 03/12/21 23:21 11 B Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 80 45 - 130 03/12/21 07:28 03/12/21 23:21

Client Sample ID: PC2-SB Lab Sample ID: 680-196067-2

Percent Solids: 90.6

03/17/21 17:57

Matrix: Solid

Date Received: 03/10/21 13:45 Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.86 5.9 0.86 ug/Kg 03/11/21 10:43 03/17/21 17:57

5.9

1.5 ug/Kg ₩

03/11/21 10:43

<1.5

Toluene	1.1	J	5.9	0.99 ι	ug/Kg	₩	03/11/21 10:43	03/17/21 17:57	1
Xylenes, Total	<1.3		12	1.3 ι	ug/Kg	₽	03/11/21 10:43	03/17/21 17:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130				03/11/21 10:43	03/17/21 17:57	1
Dibromofluoromethane (Surr)	131	S1+	70 - 130				03/11/21 10:43	03/17/21 17:57	1
1,2-Dichloroethane-d4 (Surr)	138	S1+	70 - 130				03/11/21 10:43	03/17/21 17:57	1

Toluene-d8 (Surr)	105		70 - 130				03/11/21 10:43	03/17/21 17:57	1
Method: 8015D - Gasoline Ra	inge Organics (GRC	O) (GC)							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<2.5		10	2.5	mg/Kg	₩	03/11/21 10:19	03/11/21 21:39	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	90		70 - 131				03/11/21 10:19	03/11/21 21:39	100

4-Bromofluorobenzene (Surr)

Analyte

Client Sample ID: PC2-SB Date Collected: 03/08/21 20:10 Date Received: 03/10/21 13:45

Lab Sample ID: 680-196067-2

03/11/21 10:43

Prepared

03/18/21 22:07

Percent Solids: 90.6

Job ID: 680-196067-1

Gampio	 000		• · ·	
	M	atrix:	Solid	

Method: 8015D - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (C20-C36)	<21		21	21	mg/Kg	— <u></u>	03/12/21 07:28	03/13/21 00:23	1
Diesel Range Organics [C10-C28]	5.8	В	3.5	2.2	mg/Kg	₽	03/12/21 07:28	03/13/21 00:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	55		45 - 130				03/12/21 07:28	03/13/21 00:23	1

Client Sample ID: PC3-SB Lab Sample ID: 680-196067-3 Date Collected: 03/08/21 21:25 **Matrix: Solid** Date Received: 03/10/21 13:45 Percent Solids: 91.6

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <u></u> 130000 29000 4200 ug/Kg 03/11/21 10:43 03/18/21 22:07 **Benzene** Ethylbenzene 360000 29000 7600 ug/Kg 03/11/21 10:43 03/18/21 22:07 29000 03/18/21 22:07 850000 B 5000 ug/Kg 03/11/21 10:43 **Toluene** Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 03/11/21 10:43 Toluene-d8 (Surr) 96 65 - 130 03/18/21 22:07 1,2-Dichloroethane-d4 (Surr) 103 65 - 130 03/11/21 10:43 03/18/21 22:07 Dibromofluoromethane (Surr) 65 - 130 03/11/21 10:43 104 03/18/21 22:07

65 - 130

109

Result Qualifier

Method: 8260B - Volatile Organ	nic Compounds ((GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1800000		550000	61000	ug/Kg	*	03/11/21 10:19	03/22/21 14:26	500
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		65 - 130				03/11/21 10:19	03/22/21 14:26	500
1,2-Dichloroethane-d4 (Surr)	90		65 - 130				03/11/21 10:19	03/22/21 14:26	500
Dibromofluoromethane (Surr)	102		65 - 130				03/11/21 10:19	03/22/21 14:26	500
4-Bromofluorobenzene (Surr)	96		65 - 130				03/11/21 10:19	03/22/21 14:26	500

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	8900		2200	550	mg/Kg	*	03/11/21 10:19	03/12/21 22:06	20000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene	100		70 - 131				03/11/21 10:19	03/12/21 22:06	20000

Oil Range Organics (C20-C36) Diesel Range Organics [C10-C28]	260 4500 B	21 69	mg/Kg pmg/Kg pmg/Kg	00/12/21 07:20	03/13/21 00:38 03/14/21 20:04	1 20
Surrogate o-Terphenyl	%Recovery 94	Qualifier Limits 45 - 130		Prepared 03/12/21 07:28	Analyzed 03/13/21 00:38	Dil Fac

RL

MDL Unit

Analyzed

Dil Fac

Job ID: 680-196067-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: PC4-SB

Date Collected: 03/08/21 22:30 Date Received: 03/10/21 13:45 Lab Sample ID: 680-196067-4

Matrix: Solid

Percent Solids: 76.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	92000		10000	1500	ug/Kg	<u></u>	03/11/21 10:43	03/18/21 22:30	
Ethylbenzene	160000		10000	2600	ug/Kg	₽	03/11/21 10:43	03/18/21 22:30	
Toluene	320000	В	10000	1700	ug/Kg	₽	03/11/21 10:43	03/18/21 22:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	93		65 - 130				03/11/21 10:43	03/18/21 22:30	
1,2-Dichloroethane-d4 (Surr)	103		65 - 130				03/11/21 10:43	03/18/21 22:30	
Dibromofluoromethane (Surr)	104		65 - 130				03/11/21 10:43	03/18/21 22:30	
4-Bromofluorobenzene (Surr)	107		65 - 130				03/11/21 10:43	03/18/21 22:30	
Analyte Xylenes, Total	Result 800000	Qualifier		MDL 23000	Unit ug/Kg	<u>D</u>	Prepared 03/11/21 10:19	Analyzed 03/22/21 14:48	
-		Qualifier					<u>.</u>		
Xylenes, Total Surrogate	800000 %Recovery		210000 <i>Limits</i>				03/11/21 10:19 Prepared	03/22/21 14:48 Analyzed	10
Xylenes, Total Surrogate Toluene-d8 (Surr)	800000 %Recovery 102		210000 Limits 65 - 130				03/11/21 10:19 Prepared 03/11/21 10:19	03/22/21 14:48 Analyzed 03/22/21 14:48	Dil Fa
Xylenes, Total Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr)	800000 %Recovery 102 90		210000 Limits 65 - 130 65 - 130				03/11/21 10:19 Prepared 03/11/21 10:19 03/11/21 10:19	03/22/21 14:48 Analyzed 03/22/21 14:48 03/22/21 14:48	100 Dil Fa 100
Xylenes, Total Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr)	800000 %Recovery 102 90 99		210000 Limits 65 - 130 65 - 130 65 - 130				03/11/21 10:19 Prepared 03/11/21 10:19 03/11/21 10:19 03/11/21 10:19	03/22/21 14:48 Analyzed 03/22/21 14:48 03/22/21 14:48 03/22/21 14:48	10 Dil Fa 10 10 10
Xylenes, Total Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr)	800000 %Recovery 102 90		210000 Limits 65 - 130 65 - 130				03/11/21 10:19 Prepared 03/11/21 10:19 03/11/21 10:19	03/22/21 14:48 Analyzed 03/22/21 14:48 03/22/21 14:48	10 Dil Fa 10 10 10
Xylenes, Total Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr)	800000 %Recovery 102 90 99 96	Qualifier	210000 Limits 65 - 130 65 - 130 65 - 130				03/11/21 10:19 Prepared 03/11/21 10:19 03/11/21 10:19 03/11/21 10:19	03/22/21 14:48 Analyzed 03/22/21 14:48 03/22/21 14:48 03/22/21 14:48	10 Dil Fa 10 10 10
Xylenes, Total Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr)	800000 %Recovery 102 90 99 96 nge Organics (GR	Qualifier	210000 Limits 65 - 130 65 - 130 65 - 130	23000			03/11/21 10:19 Prepared 03/11/21 10:19 03/11/21 10:19 03/11/21 10:19	03/22/21 14:48 Analyzed 03/22/21 14:48 03/22/21 14:48 03/22/21 14:48	100 Dil Fa
Xylenes, Total Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Method: 8015D - Gasoline Rar	800000 %Recovery 102 90 99 96 nge Organics (GR	Qualifier O) (GC)	210000 Limits 65 - 130 65 - 130 65 - 130 65 - 130	23000	ug/Kg	*	03/11/21 10:19 Prepared 03/11/21 10:19 03/11/21 10:19 03/11/21 10:19 03/11/21 10:19	03/22/21 14:48 Analyzed 03/22/21 14:48 03/22/21 14:48 03/22/21 14:48 03/22/21 14:48	100 Dil Fa
Xylenes, Total Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Method: 8015D - Gasoline Rar Analyte	### 800000 ### ### ####################	Qualifier O) (GC) Qualifier	210000 Limits 65 - 130 65 - 130 65 - 130 RL	23000 MDL	ug/Kg Unit	<u></u>	03/11/21 10:19 Prepared 03/11/21 10:19 03/11/21 10:19 03/11/21 10:19 03/11/21 10:19	03/22/21 14:48 Analyzed 03/22/21 14:48 03/22/21 14:48 03/22/21 14:48 03/22/21 14:48 Analyzed	10 Dil Fa

Client Sample ID: SS1-GW Lab Sample ID: 680-196067-5

Limits

45 - 130

RL

26

42

MDL Unit

26 mg/Kg

27 mg/Kg

Date Collected: 03/09/21 18:15

Oil Range Organics (C20-C36)

Diesel Range Organics [C10-C28]

Analyte

Surrogate

o-Terphenyl

Date Received: 03/10/21 13:45

Method: 8015D - Diesel Range Organics (DRO) (GC)

Result Qualifier

300

2700 B

%Recovery Qualifier

93

Matrix: Water

Analyzed

03/13/21 00:53

03/14/21 20:20

Analyzed

Prepared

03/12/21 07:28

03/12/21 07:28

Prepared

₩

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.43		1.0	0.43	ug/L			03/13/21 17:44	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			03/13/21 17:44	1
Toluene	<0.48		1.0	0.48	ug/L			03/13/21 17:44	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			03/13/21 17:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		70 - 130			-		03/13/21 17:44	1
1,2-Dichloroethane-d4 (Surr)	104		60 - 124					03/13/21 17:44	1
Dibromofluoromethane (Surr)	114		70 - 130					03/13/21 17:44	1
4-Bromofluorobenzene (Surr)	108		70 - 130					03/13/21 17:44	

Eurofins TestAmerica, Savannah

Page 9 of 40

Dil Fac

Dil Fac

10

3/25/2021

9

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Lab Sample ID: 680-196067-5

Matrix: Water

Job ID: 680-196067-1

Date Collected: 03/09/21 18:15 Date Received: 03/10/21 13:45

Client Sample ID: SS1-GW

Method: 8015D - Gasoline Range	e Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<0.050		0.10	0.050	mg/L			03/12/21 20:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	104		70 - 130					03/12/21 20:17	1
Method: 8015D - Diesel Range O Analyte	• ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1.2	В	0.41	0.093	mg/L		03/12/21 13:55	03/12/21 19:46	
Oil Range Organics (C20-C36)	1.0	J	2.7	0.45	mg/L		03/12/21 13:55	03/12/21 19:46	4
									1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client Sample ID: SS2-GW

Lab Sample ID: 680-196067-6

03/13/21 18:10

03/13/21 18:10

Matrix: Water

Date Collected: 03/09/21 18:35 Date Received: 03/10/21 13:45

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Dato 110001104: 00/10/21 10:40									
Method: 8260B - Volatile Orga	anic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.43		1.0	0.43	ug/L			03/13/21 18:10	-
Ethylbenzene	<0.33		1.0	0.33	ug/L			03/13/21 18:10	
Toluene	<0.48		1.0	0.48	ug/L			03/13/21 18:10	
Xylenes, Total	<0.23		1.0	0.23	ug/L			03/13/21 18:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	106		70 - 130			-		03/13/21 18:10	
1,2-Dichloroethane-d4 (Surr)	105		60 - 124					03/13/21 18:10	

70 - 130

70 - 130

115

104

Method: 8015D - Gasoline Range Organics (GRO) (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<0.050		0.10	0.050	mg/L			03/12/21 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a a a-Trifluorotoluene	98		70 130			-		03/12/21 20:39	1

a,a,a-Trifluorotoluene	98		70 - 130					03/12/21 20:39	1
Method: 8015D - Diesel Range O	ganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	0.46	В	0.33	0.075	mg/L		03/12/21 13:55	03/12/21 19:31	1
Oil Range Organics (C20-C36)	<0.36		2.2	0.36	mg/L		03/12/21 13:55	03/12/21 19:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	78		25 - 128				03/12/21 13:55	03/12/21 19:31	1

 Client Sample ID: OP1-SB
 Lab Sample ID: 680-196067-7

 Date Collected: 03/09/21 19:30
 Matrix: Solid

 Date Received: 03/10/21 13:45
 Percent Solids: 81.8

— Method: 8260B - Volatile Organic C	Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.80		5.5	0.80	ug/Kg	*	03/11/21 10:43	03/19/21 19:00	1

Eurofins TestAmerica, Savannah

5

6

8

10

11

12

Job ID: 680-196067-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: OP1-SB

Date Collected: 03/09/21 19:30 Date Received: 03/10/21 13:45

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-196067-7

Matrix: Solid

	mati	ix. c	Jona	
Percen	t Sol	ids:	81.8	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<1.4		5.5	1.4	ug/Kg	*	03/11/21 10:43	03/19/21 19:00	-
Toluene	1.0	J	5.5	0.92	ug/Kg	₽	03/11/21 10:43	03/19/21 19:00	
Xylenes, Total	<1.2		11	1.2	ug/Kg	₽	03/11/21 10:43	03/19/21 19:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		70 - 130				03/11/21 10:43	03/19/21 19:00	
Dibromofluoromethane (Surr)	113		70 - 130				03/11/21 10:43	03/19/21 19:00	
1,2-Dichloroethane-d4 (Surr)	117		70 - 130				03/11/21 10:43	03/19/21 19:00	
Toluene-d8 (Surr)	97		70 - 130				03/11/21 10:43	03/19/21 19:00	
C6-C10	<3.3	O 11:51	13	3.3	mg/Kg	₽	03/11/21 10:19	03/11/21 22:00	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	A I I	
T:0 / /							riepareu	Analyzed	Dil Fa
a,a,a-Trifluorotoluene -	90		70 - 131				03/11/21 10:19	03/11/21 22:00	
a,a,a-Trifluorotoluene Method: 8015D - Diesel Range O		(GC)	70 - 131						
- ^ ^ -	rganics (DRO)	(GC) Qualifier	70 - 131 RL	MDL	Unit	D			100
Method: 8015D - Diesel Range O	rganics (DRO)	• •		MDL 23	Unit mg/Kg	D	03/11/21 10:19	03/11/21 22:00	100
Method: 8015D - Diesel Range O Analyte	rganics (DRO) Result	Qualifier	RL	23			03/11/21 10:19 Prepared	03/11/21 22:00 Analyzed	10
Method: 8015D - Diesel Range O Analyte Oil Range Organics (C20-C36)	rganics (DRO) Result <23	Qualifier B	RL23	23	mg/Kg	*	03/11/21 10:19 Prepared 03/12/21 07:28	03/11/21 22:00 Analyzed 03/13/21 01:09	Dil Fac

Client Sample ID: OP2-SB

Date Collected: 03/09/21 20:15 Date Received: 03/10/21 13:45

a,a,a-Trifluorotoluene

Oil Range Organics (C20-C36)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: 680-196067-8

Matrix: Solid Percent Solids: 80.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	54000		1900	280	ug/Kg	₩	03/11/21 10:43	03/19/21 21:14	1
Ethylbenzene	33000		1900	510	ug/Kg	₽	03/11/21 10:43	03/19/21 21:14	1
Toluene	4700		1900	330	ug/Kg	₩	03/11/21 10:43	03/19/21 21:14	1
Xylenes, Total	31000		3900	430	ug/Kg	₽	03/11/21 10:43	03/19/21 21:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		65 - 130				03/11/21 10:43	03/19/21 21:14	1
1,2-Dichloroethane-d4 (Surr)	100		65 - 130				03/11/21 10:43	03/19/21 21:14	1
Dibromofluoromethane (Surr)	100		65 - 130				03/11/21 10:43	03/19/21 21:14	1
4-Bromofluorobenzene (Surr)	108		65 - 130				03/11/21 10:43	03/19/21 21:14	1
Method: 8015D - Gasoline Rar	nge Organics (GR	(O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	610		170	42	mg/Kg	*	03/11/21 10:19	03/12/21 14:39	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

24 mg/Kg 03/12/21 07:28 03/13/21 01:24

03/11/21 10:19

Prepared

03/12/21 14:39

Analyzed

70 - 131

RL

24

MDL Unit

103

76

Result Qualifier

1000

Dil Fac

Job ID: 680-196067-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: OP2-SB

Lab Sample ID: 680-196067-8

03/11/21 10:19

03/22/21 15:10

Matrix: Solid

Percent Solids: 80.0

Date Collected: 03/09/21 20:15	
Date Received: 03/10/21 13:45	

4-Bromofluorobenzene (Surr)

Method: 8015D - Diesel Range Or	rganics (DRO)	(GC) (Conti	inued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	580	В	3.9	2.5	mg/Kg	₩	03/12/21 07:28	03/13/21 01:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	77		45 - 130				03/12/21 07:28	03/13/21 01:24	1

Client Sample ID: OP3-SB Lab Sample ID: 680-196067-9

Date Collected: 03/09/21 20:55 **Matrix: Solid** Date Received: 03/10/21 13:45 Percent Solids: 80.9

Date Neccivea: 00/10/21 10:40								T CICCIII OOII	u3. 00.0
Method: 8260B - Volatile Orga	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	10000		6200	900	ug/Kg	\$	03/11/21 10:19	03/22/21 15:10	1
Ethylbenzene	13000		6200	1600	ug/Kg	₽	03/11/21 10:19	03/22/21 15:10	1
Toluene	24000		6200	1100	ug/Kg	₽	03/11/21 10:19	03/22/21 15:10	1
Xylenes, Total	71000		12000	1400	ug/Kg	*	03/11/21 10:19	03/22/21 15:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		65 - 130				03/11/21 10:19	03/22/21 15:10	1
1,2-Dichloroethane-d4 (Surr)	93		65 - 130				03/11/21 10:19	03/22/21 15:10	1
Dibromofluoromethane (Surr)	100		65 - 130				03/11/21 10:19	03/22/21 15:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	1200		250	62	mg/Kg	*	03/11/21 10:19	03/12/21 15:01	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene	100		70 - 131				03/11/21 10:19	03/12/21 15:01	1000

65 - 130

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (C20-C36)	<120		120	120	mg/Kg	-	03/12/21 07:28	03/13/21 01:39	5
Diesel Range Organics [C10-C28]	100	В	20	13	mg/Kg	₩	03/12/21 07:28	03/13/21 01:39	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	57		45 - 130				03/12/21 07:28	03/13/21 01:39	5

Client Sample ID: OP5-GW Lab Sample ID: 680-196067-10

Date Collected: 03/09/21 20:20 Date Received: 03/10/21 13:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<43		100	43	ug/L			03/13/21 22:25	100
Ethylbenzene	6200		100	33	ug/L			03/13/21 22:25	100
Toluene	540		100	48	ug/L			03/13/21 22:25	100
Xylenes, Total	19000		100	23	ug/L			03/13/21 22:25	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		70 - 130			_		03/13/21 22:25	100
1,2-Dichloroethane-d4 (Surr)	110		60 - 124					03/13/21 22:25	100
Dibromofluoromethane (Surr)	119		70 130					03/13/21 22:25	100

Eurofins TestAmerica, Savannah

Matrix: Water

Client: Tetra Tech EM Inc. Job ID: 680-196067-1

Project/Site: Brunswick

Client Sample ID: OP5-GW

Lab Sample ID: 680-196067-10 Date Collected: 03/09/21 20:20

Matrix: Water

Date Received: 03/10/21 13:45

Method: 8260B - Volatile Organic Compounds ((GC/MS) (Continued)
--	---------------------

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95	70 - 130		03/13/21 22:25	100

Method: 8015D - Gasoline Range Organ	nics (GRO) (GC)
A It It	DII 0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	67		10	5.0	mg/L			03/12/21 21:23	100

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	103		70 - 130		03/12/21 21:23	100

Method: 8015D - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	10	В	0.30	0.067	mg/L		03/12/21 13:55	03/12/21 20:02	1
Oil Range Organics (C20-C36)	<0.33		2.0	0.33	mg/L		03/12/21 13:55	03/12/21 20:02	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	73		25 - 128	03/12/21 13:55	03/12/21 20:02	1

Client Sample ID: OP4-SB

Lab Sample ID: 680-196067-11 Date Collected: 03/09/21 21:55 Matrix: Solid Date Received: 03/10/21 13:45 Percent Solids: 78.6

Method: 8260B - Volatile O	rganic Compounds (GC/MS	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	4.0	J	5.3	0.78	ug/Kg		03/11/21 10:43	03/18/21 20:16	1
Ethylbenzene	6.8		5.3	1.4	ug/Kg	₩	03/11/21 10:43	03/18/21 20:16	1
Toluene	14	В	5.3	0.90	ug/Kg	₩	03/11/21 10:43	03/18/21 20:16	1
Xylenes, Total	37		11	1.2	ug/Kg	₩	03/11/21 10:43	03/18/21 20:16	1

Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103	70 - 130	03/11/21 10:43	03/18/21 20:16	1
Dibromofluoromethane (Surr)	108	70 - 130	03/11/21 10:43	03/18/21 20:16	1
1,2-Dichloroethane-d4 (Surr)	119	70 - 130	03/11/21 10:43	03/18/21 20:16	1
Toluene-d8 (Surr)	80	70 - 130	03/11/21 10:43	03/18/21 20:16	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	3.9 J	13	3.3	mg/Kg	₩	03/11/21 10:19	03/11/21 23:06	100

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	85	70 - 131	03/11/21 10:19	03/11/21 23:06	100

Method: 8015D - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (C20-C36)	58		25	mg/Kg	#	03/12/21 07:28	03/13/21 01:55	1
Diesel Range Organics [C10-C28]	210	B 4.1	2.6	mg/Kg	₽	03/12/21 07:28	03/13/21 01:55	1

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	88		45 - 130	03/12/21 07:28	03/13/21 01:55	1

Eurofins TestAmerica, Savannah

Job ID: 680-196067-1

Client Sample ID: PC5-SB

Date Collected: 03/10/21 02:55 Date Received: 03/10/21 13:45 Lab Sample ID: 680-196067-12

Matrix: Solid

Percent Solids: 80.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	64000		44000	6400	ug/Kg		03/11/21 10:19	03/22/21 15:55	1
Ethylbenzene	140000		44000	11000	ug/Kg	₽	03/11/21 10:19	03/22/21 15:55	1
Toluene	150000		44000	7500	ug/Kg	₽	03/11/21 10:19	03/22/21 15:55	1
Xylenes, Total	650000		88000	9700	ug/Kg	₽	03/11/21 10:19	03/22/21 15:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	108		65 - 130				03/11/21 10:19	03/22/21 15:55	1
1,2-Dichloroethane-d4 (Surr)	93		65 - 130				03/11/21 10:19	03/22/21 15:55	1
Dibromofluoromethane (Surr)	102		65 - 130				03/11/21 10:19	03/22/21 15:55	1
4-Bromofluorobenzene (Surr)	105		65 - 130				03/11/21 10:19	03/22/21 15:55	1
Method: 8015D - Gasoline Rang	ge Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	2700		350	88	mg/Kg	*	03/11/21 10:19	03/12/21 15:23	2000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	101		70 - 131				03/11/21 10:19	03/12/21 15:23	2000
Method: 8015D - Diesel Range (Organics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (C20-C36)	<120		120	120	mg/Kg		03/12/21 07:28	03/13/21 03:11	5

20

Limits

45 - 130

13 mg/Kg

Client Sample ID: PC5-SB-DUP

Date Collected: 03/10/21 03:00

Diesel Range Organics [C10-C28]

Surrogate

o-Terphenyl

a,a,a-Trifluorotoluene

1200 B

%Recovery Qualifier

65

%Recovery Qualifier

100

Lab Sample ID: 680-196067-13

03/13/21 03:11

Analyzed

03/12/21 07:28

Prepared

Prepared

03/11/21 10:19

Matrix: Solid

5

Dil Fac

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	26000	J	44000	6400	ug/Kg	<u></u>	03/11/21 10:19	03/22/21 16:17	
Ethylbenzene	68000		44000	11000	ug/Kg	₩	03/11/21 10:19	03/22/21 16:17	•
Toluene	42000	J	44000	7500	ug/Kg	₽	03/11/21 10:19	03/22/21 16:17	1
Xylenes, Total	320000		88000	9700	ug/Kg	₽	03/11/21 10:19	03/22/21 16:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	110		65 - 130				03/11/21 10:19	03/22/21 16:17	1
1,2-Dichloroethane-d4 (Surr)	92		65 - 130				03/11/21 10:19	03/22/21 16:17	1
Dibromofluoromethane (Surr)	102		65 - 130				03/11/21 10:19	03/22/21 16:17	1
4-Bromofluorobenzene (Surr)	100		65 - 130				03/11/21 10:19	03/22/21 16:17	1
Method: 8015D - Gasoline Rar	nge Organics (GR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	2900		350	88	mg/Kg	— <u>—</u>	03/11/21 10:19	03/12/21 15:45	2000

Eurofins TestAmerica, Savannah

Analyzed

03/12/21 15:45

Limits

70 - 131

Dil Fac

2000

Job ID: 680-196067-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: PC5-SB-DUP

Lab Sample ID: 680-196067-13 Date Collected: 03/10/21 03:00

Matrix: Solid

Date Received: 03/10/21 13:45 Percent Solids: 80.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (C20-C36)	<120		120	120	mg/Kg	<u></u>	03/12/21 07:28	03/13/21 03:26	5
Diesel Range Organics [C10-C28]	1400	В	20	13	mg/Kg	₽	03/12/21 07:28	03/13/21 03:26	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	75		45 _ 130				03/12/21 07:28	03/13/21 03:26	5

Client Sample ID: Trip Blank 1 Lab Sample ID: 680-196067-14

Date Collected: 03/08/21 00:00 **Matrix: Water** Date Received: 03/10/21 13:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.43		1.0	0.43	ug/L			03/13/21 16:02	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			03/13/21 16:02	1
Toluene	<0.48		1.0	0.48	ug/L			03/13/21 16:02	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			03/13/21 16:02	1

	Surrogate	%Recovery	Qualifier Lin	nits	Prepared	Analyzed	Dil Fac
	Toluene-d8 (Surr)	107	70	. 130		03/13/21 16:02	1
	1,2-Dichloroethane-d4 (Surr)	104	60	.124		03/13/21 16:02	1
	Dibromofluoromethane (Surr)	113	70	. 130		03/13/21 16:02	1
١	4-Bromofluorobenzene (Surr)	107	70	.130		03/13/21 16:02	1

Client Sample ID: Trip Blank 2 Lab Sample ID: 680-196067-15

Date Collected: 03/08/21 00:00 **Matrix: Water** Date Received: 03/10/21 13:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.43		1.0	0.43	ug/L			03/13/21 16:28	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			03/13/21 16:28	1
Toluene	<0.48		1.0	0.48	ug/L			03/13/21 16:28	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			03/13/21 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	112		70 - 130			-		03/13/21 16:28	1
1,2-Dichloroethane-d4 (Surr)	108		60 - 124					03/13/21 16:28	1

70 - 130

70 - 130

117

106

3/25/2021

03/13/21 16:28

03/13/21 16:28

Job ID: 680-196067-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-659401/9

Matrix: Water

Analysis Batch: 659401

Client Sample ID: Me	ethod Blank
Danie Tor	T-4-1/NIA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.43		1.0	0.43	ug/L			03/13/21 15:19	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			03/13/21 15:19	1
Toluene	<0.48		1.0	0.48	ug/L			03/13/21 15:19	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			03/13/21 15:19	1

MB MB

Surrogate	%Recovery Quali	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	60 - 124		03/13/21 15:19	1
Dibromofluoromethane (Surr)	116	70 - 130		03/13/21 15:19	1
Toluene-d8 (Surr)	108	70 - 130		03/13/21 15:19	1
4-Bromofluorobenzene (Surr)	107	70 - 130		03/13/21 15:19	1

Lab Sample ID: LCS 680-659401/4

Matrix: Water

Analyte Benzene Ethylbenzene Toluene Xylenes, Total

Analysis Batch: 659401

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS		%Rec.			
Added	Result	Qualifier	Unit	D	%Rec	Limits	
50.0	58.2		ug/L		116	70 - 130	
50.0	56.0		ug/L		112	70 - 130	
50.0	56.5		ug/L		113	70 - 130	
100	115		ua/l		115	70 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		60 - 124
Dibromofluoromethane (Surr)	112		70 - 130
Toluene-d8 (Surr)	108		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 680-659401/5

Matrix: Water

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analysis Batch: 659401

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit %Rec Limits **RPD** Limit 50.0 56.8 ug/L 114 70 - 130 30 50.0 55.8 ug/L 112 70 - 130 20 0 50.0 55.5 ug/L 111 70 - 130 30 100 114 70 - 130 30 114 ug/L

	LCSD I	LCSD	D		
Surrogate	%Recovery (Qualifier	Limits		
1,2-Dichloroethane-d4 (Surr)	106		60 - 124		
Dibromofluoromethane (Surr)	110		70 - 130		
Toluene-d8 (Surr)	108		70 - 130		
4-Bromofluorobenzene (Surr)	94		70 - 130		

Eurofins TestAmerica, Savannah

3/25/2021

Job ID: 680-196067-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-659926/9

Matrix: Solid

Analysis Batch: 659926

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB MDL Unit Dil Fac Analyte Result Qualifier RLPrepared Analyzed Benzene <0.73 5.0 0.73 ug/Kg 03/17/21 14:00 Ethylbenzene <1.3 5.0 1.3 ug/Kg 03/17/21 14:00 Toluene <0.84 5.0 0.84 ug/Kg 03/17/21 14:00 Xylenes, Total <1.1 10 03/17/21 14:00 1.1 ug/Kg

MB MB

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	70 - 130		03/17/21 14:00	1
Dibromofluoromethane (Surr)	112	70 - 130		03/17/21 14:00	1
Toluene-d8 (Surr)	92	70 - 130		03/17/21 14:00	1
4-Bromofluorobenzene (Surr)	95	70 - 130		03/17/21 14:00	1

Lab Sample ID: LCS 680-659926/4

Matrix: Solid

Analysis Batch: 659926

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	52.8		ug/Kg		106	70 - 130	_
Ethylbenzene	50.0	50.8		ug/Kg		102	70 - 130	
Toluene	50.0	53.1		ug/Kg		106	70 - 130	
Xylenes, Total	100	106		ug/Kg		106	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	118		70 - 130
Dibromofluoromethane (Surr)	116		70 - 130
Toluene-d8 (Surr)	102		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

Lab Sample ID: LCSD 680-659926/5

Matrix: Solid

Analysis Batch: 659926

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	46.3	-	ug/Kg		93	70 - 130	13	20
Ethylbenzene	50.0	48.0		ug/Kg		96	70 - 130	6	20
Toluene	50.0	47.3		ug/Kg		95	70 - 130	11	20
Xylenes, Total	100	97.6		ug/Kg		98	70 - 130	8	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
Toluene-d8 (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130

Eurofins TestAmerica, Savannah

Job ID: 680-196067-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-660167/12

Matrix: Solid

Analysis Batch: 660167

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB MDL Unit Dil Fac Analyte Result Qualifier RL D Prepared Analyzed Benzene <0.73 5.0 0.73 ug/Kg 03/18/21 16:03 Ethylbenzene <1.3 5.0 1.3 ug/Kg 03/18/21 16:03 Toluene 1.77 J 5.0 0.84 ug/Kg 03/18/21 16:03 10 03/18/21 16:03 Xylenes, Total <1.1 1.1 ug/Kg

MB MB

Surrogate	%Recovery Quali	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	70 - 130		03/18/21 16:03	1
Dibromofluoromethane (Surr)	113	70 - 130		03/18/21 16:03	1
Toluene-d8 (Surr)	92	70 - 130		03/18/21 16:03	1
4-Bromofluorobenzene (Surr)	108	70 - 130		03/18/21 16:03	1

Lab Sample ID: LCS 680-660167/8

Matrix: Solid

Analysis Batch: 660167

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	52.5		ug/Kg		105	70 - 130	_
Ethylbenzene	50.0	52.9		ug/Kg		106	70 - 130	
Toluene	50.0	58.2		ug/Kg		116	70 - 130	
Xylenes, Total	100	109		ug/Kg		109	70 - 130	

Spike

Added

50.0

50.0

50.0

100

LCSD LCSD

45.6

48.1

50.9

98.4

Result Qualifier

ug/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	113		70 - 130
Dibromofluoromethane (Surr)	116		70 - 130
Toluene-d8 (Surr)	101		70 - 130
4-Bromofluorobenzene (Surr)	110		70 - 130

Lab Sample ID: LCSD 680-660167/9

Matrix: Solid

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analysis Batch: 660167

Client Sample ID: I	Lab Control Sample Dup
	Prep Type: Total/NA

%Rec. RPD Unit %Rec Limits **RPD** Limit ug/Kg 91 70 - 130 14 20 96 70 - 130 20 ug/Kg 10 ug/Kg 102 70 - 130 13 20

98

70 - 130

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100	-	70 - 130
Dibromofluoromethane (Surr)	99		70 - 130
Toluene-d8 (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130

Eurofins TestAmerica, Savannah

3/25/2021

10

20

Job ID: 680-196067-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-660392/7

Matrix: Solid

Analysis Batch: 660392

Client Sample ID: I	Method Blank
Prep T	vpe: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.73		5.0	0.73	ug/Kg			03/19/21 13:02	1
Ethylbenzene	<1.3		5.0	1.3	ug/Kg			03/19/21 13:02	1
Toluene	<0.84		5.0	0.84	ug/Kg			03/19/21 13:02	1
Xylenes, Total	<1.1		10	1.1	ug/Kg			03/19/21 13:02	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 101 70 - 130 03/19/21 13:02 108 70 - 130 03/19/21 13:02 Dibromofluoromethane (Surr) 70 - 130 Toluene-d8 (Surr) 93 03/19/21 13:02 4-Bromofluorobenzene (Surr) 98 70 - 130 03/19/21 13:02

Lab Sample ID: LCS 680-660392/5

Matrix: Solid

Analysis Batch: 660392

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
50.0	52.9		ug/Kg		106	70 - 130	
50.0	55.1		ug/Kg		110	70 - 130	
50.0	57.5		ug/Kg		115	70 - 130	
100	115		ug/Kg		115	70 - 130	
	50.0 50.0 50.0	Added Result 50.0 52.9 50.0 55.1 50.0 57.5	Added Result Qualifier 50.0 52.9 50.0 55.1 50.0 57.5	Added Result Qualifier Unit 50.0 52.9 ug/Kg 50.0 55.1 ug/Kg 50.0 57.5 ug/Kg	Added Result Qualifier Unit D 50.0 52.9 ug/Kg 50.0 55.1 ug/Kg 50.0 57.5 ug/Kg	Added Result Qualifier Unit D %Rec 50.0 52.9 ug/Kg 106 50.0 55.1 ug/Kg 110 50.0 57.5 ug/Kg 115	Added Result Qualifier Unit D %Rec Limits 50.0 52.9 ug/Kg 106 70 - 130 50.0 55.1 ug/Kg 110 70 - 130 50.0 57.5 ug/Kg 115 70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		70 - 130
Dibromofluoromethane (Surr)	112		70 - 130
Toluene-d8 (Surr)	105		70 - 130
4-Bromofluorobenzene (Surr)	111		70 - 130

Lab Sample ID: LCSD 680-660392/9

Matrix: Solid

Analysis Batch: 660392

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	47.0		ug/Kg		94	70 - 130	12	20
Ethylbenzene	50.0	49.4		ug/Kg		99	70 - 130	11	20
Toluene	50.0	50.5		ug/Kg		101	70 - 130	13	20
Xylenes, Total	100	104		ug/Kg		104	70 - 130	10	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		70 - 130
Dibromofluoromethane (Surr)	107		70 - 130
Toluene-d8 (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	103		70 - 130

Eurofins TestAmerica, Savannah

3/25/2021

Job ID: 680-196067-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-660677/5

Matrix: Solid

Analysis Batch: 660677

Client Sample ID: M	lethod Blank
Prep Ty	pe: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.73		5.0	0.73	ug/Kg			03/22/21 12:15	1
Ethylbenzene	<1.3		5.0	1.3	ug/Kg			03/22/21 12:15	1
Toluene	<0.85		5.0	0.85	ug/Kg			03/22/21 12:15	1
Xylenes, Total	<1.1		10	1.1	ug/Kg			03/22/21 12:15	1

MB MB Dil Fac Surrogate Qualifier Limits Prepared %Recovery Analyzed 1,2-Dichloroethane-d4 (Surr) 91 65 - 130 03/22/21 12:15 100 Dibromofluoromethane (Surr) 65 - 130 03/22/21 12:15 Toluene-d8 (Surr) 108 65 - 130 03/22/21 12:15 65 - 130 03/22/21 12:15 4-Bromofluorobenzene (Surr) 98

Lab Sample ID: LCS 680-660677/3

Matrix: Solid

Analysis Batch: 660677

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
50.0	48.3		ug/Kg		97	70 - 130	
50.0	53.9		ug/Kg		108	70 - 130	
50.0	47.9		ug/Kg		96	70 - 130	
100	109		ug/Kg		109	70 - 130	
	Added 50.0 50.0 50.0	Added Result 50.0 48.3 50.0 53.9 50.0 47.9	Added Result Qualifier 50.0 48.3 50.0 53.9 50.0 47.9	Added Result Qualifier Unit 50.0 48.3 ug/Kg 50.0 53.9 ug/Kg 50.0 47.9 ug/Kg	Added Result Qualifier Unit D 50.0 48.3 ug/Kg 50.0 53.9 ug/Kg 50.0 47.9 ug/Kg	Added Result Qualifier Unit D %Rec 50.0 48.3 ug/Kg 97 50.0 53.9 ug/Kg 108 50.0 47.9 ug/Kg 96	Added Result Qualifier Unit D %Rec Limits 50.0 48.3 ug/Kg 97 70 - 130 50.0 53.9 ug/Kg 108 70 - 130 50.0 47.9 ug/Kg 96 70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		65 - 130
Dibromofluoromethane (Surr)	100		65 - 130
Toluene-d8 (Surr)	109		65 - 130
4-Bromofluorobenzene (Surr)	100		65 - 130

Method: 8015D - Gasoline Range Organics (GRO) (GC)

MR MR

89

Lab Sample ID: MB 680-659074/26

Matrix: Solid

Analysis Batch: 659074

Client Sample ID: Method Blank Prep Type: Total/NA

03/11/21 20:55

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<2.5		10	2.5	mg/Kg			03/11/21 20:55	100
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

70 - 131

Lab Sample ID: LCS 680-659074/24

Matrix: Solid

a,a,a-Trifluorotoluene

Analysis Batch: 659074

,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	50.0	45.4		mg/Kg		91	64 - 133	

Eurofins TestAmerica, Savannah

Lab Sample ID: LCS 680-659074/24

Job ID: 680-196067-1

Method: 8015D - Gasoline Range Organics (GRO) (GC) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 659074

LCS LCS

мв мв

MB MB

97

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene 98 70 - 131

Lab Sample ID: LCSD 680-659074/25 Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 659074

Spike LCSD LCSD %Rec. RPD RPD Analyte Added Result Qualifier Unit %Rec Limits Limit C6-C10 50.0 47.0 mg/Kg 94 64 - 133

LCSD LCSD Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene 99 70 - 131

Lab Sample ID: MB 680-659263/17 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 659263

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<0.050		0.10	0.050	mg/L			03/12/21 18:27	1

Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed a,a,a-Trifluorotoluene 95 70 - 130 03/12/21 18:27

Lab Sample ID: MB 680-659263/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 659263

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<2.5		10	2.5	mg/Kg			03/12/21 13:40	100

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

70 - 131

Lab Sample ID: LCS 680-659263/15 **Client Sample ID: Lab Control Sample**

Matrix: Water

a,a,a-Trifluorotoluene

Analysis Batch: 659263

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	 0.500	0.491		ma/L		98	70 - 148	

LCS LCS Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene 103 70 - 130 03/12/21 13:40

Prep Type: Total/NA

100

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 659183

3/25/2021

Project/Site: Brunswick

Job ID: 680-196067-1 Client: Tetra Tech EM Inc.

Method: 8015D - Gasoline Range Organics (GRO) (GC) (Continued)

Lab Sample ID: LCS 680-659263/4 Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 659263

LCS LCS %Rec. Spike Added Result Qualifier %Rec

Analyte Limits Unit C6-C10 50.0 48.7 mg/Kg 97 64 - 133

LCS LCS

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene 104 70 - 131

Lab Sample ID: LCSD 680-659263/16 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 659263

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit C6-C10 0.500 0.474 95 70 - 148 50 mg/L

LCSD LCSD Qualifier Surrogate %Recovery Limits

102

Lab Sample ID: LCSD 680-659263/5 Client Sample ID: Lab Control Sample Dup

70 - 130

Matrix: Solid

a,a,a-Trifluorotoluene

Analysis Batch: 659263

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit C6-C10 50.0 48.3 97 50 mg/Kg 64 _ 133

LCSD LCSD

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene 103 70 - 131

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 680-659183/13-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 659296 **Prep Batch: 659183** MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Diesel Range Organics [C10-C28] 2.24 3.2 mg/Kg 03/12/21 07:28 03/12/21 21:49 2.0 Oil Range Organics (C20-C36) 19 03/12/21 21:49 <19 mg/Kg 03/12/21 07:28

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 78 45 - 130 03/12/21 07:28 03/12/21 21:49 o-Terphenyl

Lab Sample ID: LCS 680-659183/14-A Client Sample ID: Lab Control Sample

Matrix: Solid Analysis Batch: 659296

Spike LCS LCS %Rec.

Analyte Added Result Qualifier %Rec Limits Unit **Diesel Range Organics** 65.0 47.9 mg/Kg 35 - 130

[C10-C28]

Eurofins TestAmerica, Savannah

Job ID: 680-196067-1

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 680-659183/14-A

Matrix: Solid

Analysis Batch: 659296

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 659183

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 85 45 - 130

Matrix: Solid

Analyte

Analysis Batch: 659296

Oil Range Organics (C20-C36)

Lab Sample ID: LCS 680-659183/17-A

Prep Type: Total/NA **Prep Batch: 659183** LCS LCS Spike

Unit

mg/Kg

%Rec.

Limits

13 - 148

Client Sample ID: Lab Control Sample

%Rec

D

13 - 148

65

LCS LCS

%Recovery Surrogate

Qualifier Limits 96 45 - 130

Lab Sample ID: 680-196067-1 MS Client Sample ID: PC1-SB Prep Type: Total/NA

Added

babbA

167

131

Matrix: Solid

o-Terphenyl

Analyte

Analysis Batch: 659296

Oil Range Organics (C20-C36)

Prep Batch: 659183 Sample Sample Spike MS MS %Rec.

129

Result Qualifier

85.0

Result Qualifier mg/Kg

Limits Unit D %Rec

ġ

Result Qualifier <26

MS MS Qualifier Limits Surrogate %Recovery

90 45 - 130 o-Terphenyl

Lab Sample ID: 680-196067-1 MSD

Matrix: Solid

Analysis Batch: 659296

Client Sample ID: PC1-SB Prep Type: Total/NA

Prep Batch: 659183

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Oil Range Organics (C20-C36) 168 114 50 <26 mg/Kg 13 _ 148 12

> MSD MSD

%Recovery Surrogate Qualifier Limits

o-Terphenyl 81 45 - 130

Lab Sample ID: MB 680-659304/1-A

Matrix: Water

Analysis Batch: 659296

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 659304

MR MR

MDL Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac mg/L Diesel Range Organics [C10-C28] 0.106 J 0.30 0.068 03/12/21 13:55 03/12/21 17:13 Oil Range Organics (C20-C36) < 0.33 2.0 0.33 mg/L 03/12/21 13:55 03/12/21 17:13

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 61 03/12/21 13:55 03/12/21 17:13 25 - 128

Eurofins TestAmerica, Savannah

Client: Tetra Tech EM Inc. Job ID: 680-196067-1

Project/Site: Brunswick

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

69

Lab Sample ID: LCS 680-659304/2-A

Matrix: Water

Analysis Batch: 659296

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 659304

 Analyte
 Added
 Result Qualifier
 Unit
 D
 %Rec.

 Diesel Range Organics
 4.00
 2.03
 mg/L
 51
 21 - 130

 [C10-C28]
 [C10-C28]

LCS LCS
Surrogate %Recovery Qualifier Limits

o-Terphenyl

[C10-C28]

Lab Sample ID: LCSD 680-659304/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 659296

Prep Batch: 659304

25 - 128

Spike LCSD LCSD RPD Limit Analyte Added Result Qualifier Unit %Rec Limits RPD D Diesel Range Organics 4.00 2.50 63 21 - 130 21 50

 Surrogate
 %Recovery or Terphenyl
 Qualifier or Terphenyl
 Limits or Terphenyl

Lab Sample ID: LCSD 680-659304/5-A

Client Sample ID: Lab Control Sample Dup
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 659296 Prep Batch: 659304 LCSD LCSD RPD Spike %Rec. Result Qualifier Limit Analyte Added Unit D %Rec Limits RPD Oil Range Organics (C20-C36) 8.00 4.81 mg/L 60 32 _ 130 15 50

 Surrogate
 %Recovery or Terphenyl
 Qualifier or Limits

 0-Terphenyl
 86
 25 - 128

Eurofins TestAmerica, Savannah

3

4

6

8

9

10

11

12

QC Association Summary

Client: Tetra Tech EM Inc. Job ID: 680-196067-1 Project/Site: Brunswick

GC/MS VOA

Prep Batch: 659051

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-3 - DL	PC3-SB	Total/NA	Solid	5035A	
680-196067-4 - DL	PC4-SB	Total/NA	Solid	5035A	
680-196067-9	OP3-SB	Total/NA	Solid	5035A	
680-196067-12	PC5-SB	Total/NA	Solid	5035A	
680-196067-13	PC5-SB-DUP	Total/NA	Solid	5035A	

Prep Batch: 659073

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-1	PC1-SB	Total/NA	Solid	5035A	<u> </u>
680-196067-2	PC2-SB	Total/NA	Solid	5035A	
680-196067-3	PC3-SB	Total/NA	Solid	5035A	
680-196067-4	PC4-SB	Total/NA	Solid	5035A	
680-196067-7	OP1-SB	Total/NA	Solid	5035A	
680-196067-8	OP2-SB	Total/NA	Solid	5035A	
680-196067-11	OP4-SB	Total/NA	Solid	5035A	

Analysis Batch: 659401

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-5	SS1-GW	Total/NA	Water	8260B	 -
680-196067-6	SS2-GW	Total/NA	Water	8260B	
680-196067-10	OP5-GW	Total/NA	Water	8260B	
680-196067-14	Trip Blank 1	Total/NA	Water	8260B	
680-196067-15	Trip Blank 2	Total/NA	Water	8260B	
MB 680-659401/9	Method Blank	Total/NA	Water	8260B	
LCS 680-659401/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-659401/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 659926

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-2	PC2-SB	Total/NA	Solid	8260B	659073
MB 680-659926/9	Method Blank	Total/NA	Solid	8260B	
LCS 680-659926/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-659926/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 660167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-1	PC1-SB	Total/NA	Solid	8260B	659073
680-196067-3	PC3-SB	Total/NA	Solid	8260B	659073
680-196067-4	PC4-SB	Total/NA	Solid	8260B	659073
680-196067-11	OP4-SB	Total/NA	Solid	8260B	659073
MB 680-660167/12	Method Blank	Total/NA	Solid	8260B	
LCS 680-660167/8	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-660167/9	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 660392

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-7	OP1-SB	Total/NA	Solid	8260B	659073
680-196067-8	OP2-SB	Total/NA	Solid	8260B	659073
MB 680-660392/7	Method Blank	Total/NA	Solid	8260B	
LCS 680-660392/5	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-660392/9	Lab Control Sample Dup	Total/NA	Solid	8260B	

Eurofins TestAmerica, Savannah

Page 25 of 40

QC Association Summary

Client: Tetra Tech EM Inc. Job ID: 680-196067-1 Project/Site: Brunswick

GC/MS VOA

Analysis Batch: 660677

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-3 - DL	PC3-SB	Total/NA	Solid	8260B	659051
680-196067-4 - DL	PC4-SB	Total/NA	Solid	8260B	659051
680-196067-9	OP3-SB	Total/NA	Solid	8260B	659051
680-196067-12	PC5-SB	Total/NA	Solid	8260B	659051
680-196067-13	PC5-SB-DUP	Total/NA	Solid	8260B	659051
MB 680-660677/5	Method Blank	Total/NA	Solid	8260B	
LCS 680-660677/3	Lab Control Sample	Total/NA	Solid	8260B	

GC VOA

Prep Batch: 659051

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-1	PC1-SB	Total/NA	Solid	5035A	
680-196067-2	PC2-SB	Total/NA	Solid	5035A	
680-196067-3	PC3-SB	Total/NA	Solid	5035A	
680-196067-4	PC4-SB	Total/NA	Solid	5035A	
680-196067-7	OP1-SB	Total/NA	Solid	5035A	
680-196067-8	OP2-SB	Total/NA	Solid	5035A	
680-196067-9	OP3-SB	Total/NA	Solid	5035A	
680-196067-11	OP4-SB	Total/NA	Solid	5035A	
680-196067-12	PC5-SB	Total/NA	Solid	5035A	
680-196067-13	PC5-SB-DUP	Total/NA	Solid	5035A	

Analysis Batch: 659074

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-1	PC1-SB	Total/NA	Solid	8015D	659051
680-196067-2	PC2-SB	Total/NA	Solid	8015D	659051
680-196067-7	OP1-SB	Total/NA	Solid	8015D	659051
680-196067-11	OP4-SB	Total/NA	Solid	8015D	659051
MB 680-659074/26	Method Blank	Total/NA	Solid	8015D	
LCS 680-659074/24	Lab Control Sample	Total/NA	Solid	8015D	
LCSD 680-659074/25	Lab Control Sample Dup	Total/NA	Solid	8015D	

Analysis Batch: 659263

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-3	PC3-SB	Total/NA	Solid	8015D	659051
680-196067-4	PC4-SB	Total/NA	Solid	8015D	659051
680-196067-5	SS1-GW	Total/NA	Water	8015D	
680-196067-6	SS2-GW	Total/NA	Water	8015D	
680-196067-8	OP2-SB	Total/NA	Solid	8015D	659051
680-196067-9	OP3-SB	Total/NA	Solid	8015D	659051
680-196067-10	OP5-GW	Total/NA	Water	8015D	
680-196067-12	PC5-SB	Total/NA	Solid	8015D	659051
680-196067-13	PC5-SB-DUP	Total/NA	Solid	8015D	659051
MB 680-659263/17	Method Blank	Total/NA	Water	8015D	
MB 680-659263/6	Method Blank	Total/NA	Water	8015D	
LCS 680-659263/15	Lab Control Sample	Total/NA	Water	8015D	
LCS 680-659263/4	Lab Control Sample	Total/NA	Solid	8015D	
LCSD 680-659263/16	Lab Control Sample Dup	Total/NA	Water	8015D	
LCSD 680-659263/5	Lab Control Sample Dup	Total/NA	Solid	8015D	

Page 26 of 40

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Job ID: 680-196067-1

GC Semi VOA

Prep Batch: 659183

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-196067-1	PC1-SB	Total/NA	Solid	3546	
680-196067-2	PC2-SB	Total/NA	Solid	3546	
680-196067-3	PC3-SB	Total/NA	Solid	3546	
680-196067-4	PC4-SB	Total/NA	Solid	3546	
680-196067-7	OP1-SB	Total/NA	Solid	3546	
680-196067-8	OP2-SB	Total/NA	Solid	3546	
680-196067-9	OP3-SB	Total/NA	Solid	3546	
680-196067-11	OP4-SB	Total/NA	Solid	3546	
680-196067-12	PC5-SB	Total/NA	Solid	3546	
680-196067-13	PC5-SB-DUP	Total/NA	Solid	3546	
MB 680-659183/13-A	Method Blank	Total/NA	Solid	3546	
LCS 680-659183/14-A	Lab Control Sample	Total/NA	Solid	3546	
LCS 680-659183/17-A	Lab Control Sample	Total/NA	Solid	3546	
680-196067-1 MS	PC1-SB	Total/NA	Solid	3546	
680-196067-1 MSD	PC1-SB	Total/NA	Solid	3546	

Analysis Batch: 659296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-1	PC1-SB	Total/NA	Solid	8015D	659183
680-196067-2	PC2-SB	Total/NA	Solid	8015D	659183
680-196067-3	PC3-SB	Total/NA	Solid	8015D	659183
680-196067-4	PC4-SB	Total/NA	Solid	8015D	659183
680-196067-5	SS1-GW	Total/NA	Water	8015D	659304
680-196067-6	SS2-GW	Total/NA	Water	8015D	659304
680-196067-7	OP1-SB	Total/NA	Solid	8015D	659183
680-196067-8	OP2-SB	Total/NA	Solid	8015D	659183
680-196067-9	OP3-SB	Total/NA	Solid	8015D	659183
680-196067-10	OP5-GW	Total/NA	Water	8015D	659304
680-196067-11	OP4-SB	Total/NA	Solid	8015D	659183
680-196067-12	PC5-SB	Total/NA	Solid	8015D	659183
680-196067-13	PC5-SB-DUP	Total/NA	Solid	8015D	659183
MB 680-659183/13-A	Method Blank	Total/NA	Solid	8015D	659183
MB 680-659304/1-A	Method Blank	Total/NA	Water	8015D	659304
LCS 680-659183/14-A	Lab Control Sample	Total/NA	Solid	8015D	659183
LCS 680-659183/17-A	Lab Control Sample	Total/NA	Solid	8015D	659183
LCS 680-659304/2-A	Lab Control Sample	Total/NA	Water	8015D	659304
LCSD 680-659304/3-A	Lab Control Sample Dup	Total/NA	Water	8015D	659304
LCSD 680-659304/5-A	Lab Control Sample Dup	Total/NA	Water	8015D	659304
680-196067-1 MS	PC1-SB	Total/NA	Solid	8015D	659183
680-196067-1 MSD	PC1-SB	Total/NA	Solid	8015D	659183

Prep Batch: 659304

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-5	SS1-GW	Total/NA	Water	3510C	
680-196067-6	SS2-GW	Total/NA	Water	3510C	
680-196067-10	OP5-GW	Total/NA	Water	3510C	
MB 680-659304/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-659304/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 680-659304/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 680-659304/5-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Eurofins TestAmerica, Savannah

Page 27 of 40

3

6

6

Q

9

10

11

12

3/25/2021

QC Association Summary

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Job ID: 680-196067-1

GC Semi VOA

Analysis Batch: 659502

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-3	PC3-SB	Total/NA	Solid	8015D	659183
680-196067-4	PC4-SB	Total/NA	Solid	8015D	659183

General Chemistry

Analysis Batch: 658982

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196067-1	PC1-SB	Total/NA	Solid	Moisture	
680-196067-2	PC2-SB	Total/NA	Solid	Moisture	
680-196067-3	PC3-SB	Total/NA	Solid	Moisture	
680-196067-4	PC4-SB	Total/NA	Solid	Moisture	
680-196067-7	OP1-SB	Total/NA	Solid	Moisture	
680-196067-8	OP2-SB	Total/NA	Solid	Moisture	
680-196067-9	OP3-SB	Total/NA	Solid	Moisture	
680-196067-11	OP4-SB	Total/NA	Solid	Moisture	
680-196067-12	PC5-SB	Total/NA	Solid	Moisture	
680-196067-13	PC5-SB-DUP	Total/NA	Solid	Moisture	

3

4

6

7

0

10

4 4

Job ID: 680-196067-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Lab Sample ID: 680-196067-1

Client Sample ID: PC1-SB Date Collected: 03/08/21 19:10 Date Received: 03/10/21 13:45

Client Sample ID: PC1-SB

Date Collected: 03/08/21 19:10

Date Received: 03/10/21 13:45

Date Collected: 03/08/21 20:10

Date Received: 03/10/21 13:45

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			658982	03/11/21 07:20	JEB	TAL SAV
	Instrume	nt ID: NOEQUIP								

Lab Sample ID: 680-196067-1

Matrix: Solid

Percent Solids: 76.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			4.553 g	5 mL	659073	03/11/21 10:43	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	660167	03/18/21 19:32	Y1S	TAL SAV
	Instrume	nt ID: CMSAB								
Total/NA	Prep	5035A			5.869 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8015D		100	5 mL	5 mL	659074	03/11/21 21:17	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3546			15.19 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/12/21 23:21	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: PC2-SB Lab Sample ID: 680-196067-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			658982	03/11/21 07:20	JEB	TAL SAV

Client Sample ID: PC2-SB Lab Sample ID: 680-196067-2 Date Collected: 03/08/21 20:10 **Matrix: Solid**

Date Received: 03/10/21 13:45 Percent Solids: 90.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			4.696 g	5 mL	659073	03/11/21 10:43	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	659926	03/17/21 17:57	UI	TAL SAV
	Instrume	nt ID: CMSAB								
Total/NA	Prep	5035A			6.093 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8015D		100	5 mL	5 mL	659074	03/11/21 21:39	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3546			15.52 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/13/21 00:23	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

3/25/2021

Job ID: 680-196067-1

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Lab Sample ID: 680-196067-3

Client Sample ID: PC3-SB

Client Sample ID: PC3-SB

Date Collected: 03/08/21 21:25

Date Received: 03/10/21 13:45

Date Collected: 03/08/21 21:25 Date Received: 03/10/21 13:45

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			658982	03/11/21 07:20	JEB	TAL SAV
		UD NOFOLUD								

Instrument ID: NOEQUIP

Lab Sample ID: 680-196067-3

Matrix: Solid Percent Solids: 91.6

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 5035A 659073 FES TAL SAV Prep 5.05 g 5 mL 03/11/21 10:43 8260B Total/NA 660167 03/18/21 22:07 Y1S TAL SAV Analysis 1 uL 5 mL Instrument ID: CMSAB Total/NA Prep 5035A DL 5.397 g 5 mL 659051 03/11/21 10:19 **FES** TAL SAV Total/NA Analysis 8260B DL 500 50 uL 5 mL 660677 03/22/21 14:26 SMP TAL SAV Instrument ID: CMSAB Total/NA 5035A FFS TAL SAV Prep 5.397 g 5 mL 659051 03/11/21 10:19 Total/NA Analysis 8015D 20000 5 mL 5 mL 659263 03/12/21 22:06 DBM TAL SAV Instrument ID: CVGWFID1 Total/NA 3546 TAL SAV Prep 15.67 g 1 mL 659183 03/12/21 07:28 MEW Total/NA 8015D 659296 DBM TAL SAV Analysis 03/13/21 00:38 1 Instrument ID: CSGAB1 Total/NA Prep 3546 15.67 g 1 mL 659183 03/12/21 07:28 MEW TAL SAV Total/NA 659502 Analysis 8015D 20 03/14/21 20:04 JCK TAL SAV Instrument ID: CSGAB1

Client Sample ID: PC4-SB

Date Collected: 03/08/21 22:30

Date Received: 03/10/21 13:45

Lab Sample	ID: 680-196067-4
------------	------------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			658982	03/11/21 07:20	JEB	TAL SAV
	Instrume	nt ID: NOEQUIP								

Client Sample ID: PC4-SB

Date Collected: 03/08/21 22:30

Date Received: 03/10/21 13:45

Lab Sample ID:	680-196067-4
	Matrix: Solid

Percent Solids: 76.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			3.872 g	5 mL	659073	03/11/21 10:43	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 uL	5 mL	660167	03/18/21 22:30	Y1S	TAL SAV
	Instrume	nt ID: CMSAB								
Total/NA	Prep	5035A	DL		3.691 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8260B	DL	100	50 uL	5 mL	660677	03/22/21 14:48	SMP	TAL SAV
	Instrume	nt ID: CMSAB								
Total/NA	Prep	5035A			3.691 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8015D		5000	5 mL	5 mL	659263	03/12/21 16:07	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								

Eurofins TestAmerica, Savannah

Page 30 of 40

3/25/2021

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: PC4-SB

Date Collected: 03/08/21 22:30

Lab Sample ID: 680-196067-4

Matrix: Solid

Date Received: 03/10/21 13:45 Percent Solids: 76.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			15.36 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/13/21 00:53	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								
Total/NA	Prep	3546			15.36 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		10			659502	03/14/21 20:20	JCK	TAL SAV
	Instrume	nt ID: CSGAB1								

Lab Sample ID: 680-196067-5

Client Sample ID: SS1-GW Date Collected: 03/09/21 18:15

Date Received: 03/10/21 13:45

Matrix: Water

Matrix: Water

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	659401	03/13/21 17:44	EMA	TAL SAV
	Instrume	nt ID: CMSAA								
Total/NA	Analysis	8015D		1	5 mL	5 mL	659263	03/12/21 20:17	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			183.7 mL	1 mL	659304	03/12/21 13:55	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/12/21 19:46	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: SS2-GW Lab Sample ID: 680-196067-6

Date Collected: 03/09/21 18:35

Date Received: 03/10/21 13:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	659401	03/13/21 18:10	EMA	TAL SAV
	Instrume	nt ID: CMSAA								
Total/NA	Analysis	8015D		1	5 mL	5 mL	659263	03/12/21 20:39	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			227.9 mL	1 mL	659304	03/12/21 13:55	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/12/21 19:31	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: OP1-SB Lab Sample ID: 680-196067-7 Date Collected: 03/09/21 19:30

Date Received: 03/10/21 13:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	Amount	Amount	658982	03/11/21 07:20	JEB	TAL SAV
	Instrume	nt ID: NOEQUIP								

Eurofins TestAmerica, Savannah

Job ID: 680-196067-1

Client Sample ID: OP1-SB

Date Collected: 03/09/21 19:30 Date Received: 03/10/21 13:45 Lab Sample ID: 680-196067-7

Matrix: Solid
Percent Solids: 81.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			5.555 g	5 mL	659073	03/11/21 10:43	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	660392	03/19/21 19:00	SMP	TAL SAV
	Instrume	nt ID: CMSAB								
Total/NA	Prep	5035A			5.48 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8015D		100	5 mL	5 mL	659074	03/11/21 22:00	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3546			15.64 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/13/21 01:09	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: OP2-SB

Date Collected: 03/09/21 20:15 Date Received: 03/10/21 13:45 Lab Sample ID: 680-196067-8

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Method or Analyzed **Prep Type** Type Run Factor Amount Amount Number Analyst Lab Total/NA Analysis Moisture 658982 03/11/21 07:20 JEB TAL SAV Instrument ID: NOEQUIP

Client Sample ID: OP2-SB

Date Collected: 03/09/21 20:15 Date Received: 03/10/21 13:45 Lab Sample ID: 680-196067-8

Matrix: Solid Percent Solids: 80.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			3.686 g	5 mL	659073	03/11/21 10:43	FES	TAL SAV
Total/NA	Analysis	8260B		1	25 uL	5 mL	660392	03/19/21 21:14	SMP	TAL SAV
	Instrume	nt ID: CMSAB								
Total/NA	Prep	5035A			4.392 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8015D		1000	5 mL	5 mL	659263	03/12/21 14:39	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3546			15.81 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/13/21 01:24	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: OP3-SB

Date Collected: 03/09/21 20:55

Date Received: 03/10/21 13:45

Lab Sample ID: 680-196067-9

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			658982	03/11/21 07:20	JEB	TAL SAV
	Instrume	nt ID: NOEQUIP								

Client: Tetra Tech EM Inc. Project/Site: Brunswick

Client Sample ID: OP3-SB Date Collected: 03/09/21 20:55 Date Received: 03/10/21 13:45

Lab Sample ID: 680-196067-9

Job ID: 680-196067-1

Matrix: Solid		
Percent Solids: 80.9		

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			2.764 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8260B		1	10 uL	5 mL	660677	03/22/21 15:10	SMP	TAL SAV
	Instrume	ent ID: CMSAB								
Total/NA	Prep	5035A			2.764 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8015D		1000	5 mL	5 mL	659263	03/12/21 15:01	DBM	TAL SAV
	Instrume	ent ID: CVGWFID1								
Total/NA	Prep	3546			15.11 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		5			659296	03/13/21 01:39	DBM	TAL SAV
	Instrume	ent ID: CSGAB1								

Client Sample ID: OP5-GW

Lab Sample ID: 680-196067-10

Matrix: Water

Date Collected: 03/09/21 20:20 Date Received: 03/10/21 13:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		100	5 mL	5 mL	659401	03/13/21 22:25	EMA	TAL SAV
	Instrume	nt ID: CMSAA								
Total/NA	Analysis	8015D		100	5 mL	5 mL	659263	03/12/21 21:23	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3510C			252.4 mL	1 mL	659304	03/12/21 13:55	TRA	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/12/21 20:02	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client Sample ID: OP4-SB

Lab Sample ID: 680-196067-11

Matrix: Solid

Date Collected: 03/09/21 21:55 Date Received: 03/10/21 13:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			658982	03/11/21 07:20	JEB	TAL SAV

Client Sample ID: OP4-SB

Lab Sample ID: 680-196067-11

Date Collected: 03/09/21 21:55

Matrix: Solid Percent Solids: 78.6

Date Received: 03/10/21 13:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			5.972 g	5 mL	659073	03/11/21 10:43	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	660167	03/18/21 20:16	Y1S	TAL SAV
	Instrume	nt ID: CMSAB								
Total/NA	Prep	5035A			6.066 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8015D		100	5 mL	5 mL	659074	03/11/21 23:06	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3546			15.54 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		1			659296	03/13/21 01:55	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Client Sample ID: PC5-SB

Date Collected: 03/10/21 02:55 Date Received: 03/10/21 13:45 Lab Sample ID: 680-196067-12

Matrix: Solid

ſ	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	Moisture		1			658982	03/11/21 07:20	JEB	TAL SAV

Instrument ID: NOEQUIP

Lab Sample ID: 680-196067-12

Matrix: Solid

Client Sample ID: PC5-SB Date Collected: 03/10/21 02:55 Date Received: 03/10/21 13:45 Percent Solids: 80.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			4.124 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis Instrume	8260B ent ID: CMSAB		1	1 uL	5 mL	660677	03/22/21 15:55	SMP	TAL SAV
Total/NA	Prep	5035A			4.124 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis Instrume	8015D ent ID: CVGWFID1		2000	5 mL	5 mL	659263	03/12/21 15:23	DBM	TAL SAV
Total/NA	Prep	3546			15.25 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis Instrume	8015D ent ID: CSGAB1		5			659296	03/13/21 03:11	DBM	TAL SAV

Client Sample ID: PC5-SB-DUP

Date Collected: 03/10/21 03:00 Date Received: 03/10/21 13:45 Lab Sample ID: 680-196067-13

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			658982	03/11/21 07:20	JEB	TAL SAV
	Instrume	nt ID: NOFOLIP								

Client Sample ID: PC5-SB-DUP

Date Collected: 03/10/21 03:00 Date Received: 03/10/21 13:45

Lab Sample ID: 680-196067-13 **Matrix: Solid** Percent Solids: 80.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			4.08 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8260B		1	1 uL	5 mL	660677	03/22/21 16:17	SMP	TAL SAV
	Instrume	nt ID: CMSAB								
Total/NA	Prep	5035A			4.08 g	5 mL	659051	03/11/21 10:19	FES	TAL SAV
Total/NA	Analysis	8015D		2000	5 mL	5 mL	659263	03/12/21 15:45	DBM	TAL SAV
	Instrume	nt ID: CVGWFID1								
Total/NA	Prep	3546			15.17 g	1 mL	659183	03/12/21 07:28	MEW	TAL SAV
Total/NA	Analysis	8015D		5			659296	03/13/21 03:26	DBM	TAL SAV
	Instrume	nt ID: CSGAB1								

Lab Chronicle

Client: Tetra Tech EM Inc. Job ID: 680-196067-1

Project/Site: Brunswick

Client Sample ID: Trip Blank 1

Lab Sample ID: 680-196067-14 Date Collected: 03/08/21 00:00

Matrix: Water

Date Received: 03/10/21 13:45

Prepared Dil Batch Batch Initial Final Batch Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA 8260B 659401 03/13/21 16:02 TAL SAV Analysis 5 mL 5 mL EMA

Instrument ID: CMSAA

Client Sample ID: Trip Blank 2 Lab Sample ID: 680-196067-15

Matrix: Water

Date Collected: 03/08/21 00:00 Date Received: 03/10/21 13:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	659401	03/13/21 16:28	EMA	TAL SAV
	Instrume	nt ID: CMSAA								

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Accreditation/Certification Summary

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Job ID: 680-196067-1

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	06-30-21

3

4

Q

9

10

Method Summary

Client: Tetra Tech EM Inc.

Project/Site: Brunswick

Job ID: 680-196067-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8015D	Gasoline Range Organics (GRO) (GC)	SW846	TAL SAV
8015D	Diesel Range Organics (DRO) (GC)	SW846	TAL SAV
Moisture	Percent Moisture	EPA	TAL SAV
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL SAV
3546	Microwave Extraction	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV
5035A	Closed System Purge & Trap	SW846	TAL SAV
5035A	Closed System Purge & Trap/Field Methanol	SW846	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

0.400007.4

4

5

6

0

9

10

4 4

Address:

3/25/2021

TAL-8210 Sample Specific Notes sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only -ab Sampling: Job / SDG No. Months Walk-in Client: Therm ID No 2-2 COC No 680-196067 Chain of Custody Archive for 3/10/2 Disposal by Lab Lame Carrier: Site Contact: John Smile Date: Lab Contact: 16/1 Other: Received in Laboral Return to Clent -HOI RCRA Filtered Sample (Y / N)
Perform MS / MSD (Y / N) NPDES Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the 134 # of Cont. 0 Project Manager: JCSSRA UICKerS 30 Date/Time: Date/Time: Date/Time WORKING DAYS Matrix 9W らど 35 **SL** 35 **Analysis Turnaround Time** TAT if different from Below 5 Regulatory Program: Dow Type (C=Comp. G=Grab) Sample \mathcal{Z} 2 weeks 1 week 2 days 1 day Sample 1930 2015 2155 0255 1835 2055 2020 2230 1815 CALENDAR DAYS 2125 1910 2010 Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Tel/Email: 662 Custody Seal No. Poison B Sample Date Company: Company Company 3/10 3/9 3/8 Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample. 2000 Sample Identification Client Contact Charled ALORS COOK Project Name: BrandWCA Possible Hazard Identification: 2 10 10 - 58 58 GM 58 5B Custody Seals Int 195 Relinquished by: Company Name: .5-Relinquished by: elinquished by City/State/Zip OPZ 083 HOU 0P5 Phone # O d d Xe-

Page 38 of 40

2

Environment Testing TestAmerica

💸 eurofins

Chain of Custody Record 513127

Address:

4

5

7

9

11

	rogram: Dw	□ NPDES □ RCRA □ Other:		TAL-8210
Client Contact	Project Manager:	Site Contact:	Date:	COC No:
Company Name:	Tel/Email:	Lab Contact:	Carrier:	2 of 3 cocs
Address:	Analysis Turnaround Time			Sampler
City/State/Zip:	CALENDAR DAYS WORKING DAYS	8		For Lab Use Only:
Phone:	TAT if different from Below	(N		Walk-in Client:
Fax: SXC RX	2 weeks	() (N		Lab Sampling:
Project Name:	1 week			
Site:	2 days			Job / SDG No.:
# O.L.	1 day			
Sample identification	Sample Type (Sample (S	e ge		Company of Makes
PC5-5B-DUP	0 0300 6	2		משוואם מאפרווים אסופה
Too Blank 1				
Trip Blank 2	TW /			
Pa				
ge 3				
339 0				Loc: 630
if 4C				130037
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Comments Section if the lab it of isoose of the sample.	Please List any EPA Waste Codes for the sample in the	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retain	l ned longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B	Return to Client	Disposal by Lab	Months
ctions/QC Requirements & Con				
Custody Seals Intact:	Custody Seal No.:	Cooler Temp. (°C): Ob	Obs'd: Corr'd:	Therm ID No.:
Relinquished by:	Company: The Company of the Company	Taux Redorder By Down	Congany: O	Pate/Time (2008)
Relinquished by:	Company: Date/Time:	me: Received by:	Company:	Date/Time:
3/25	Company: Date/Time:	me: Received in Laboratory by:	Company:	Date/Time:
/2021				

Job Number: 680-196067-1

Client: Tetra Tech EM Inc.

Login Number: 196067 List Source: Eurofins TestAmerica, Savannah

List Number: 1

Creator: Banda, Christy S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	IDs on containers do not match the COC. Logged in per COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Savannah